

Procedure International Journal of Science and Technology

(International Open Access, Peer-reviewed & Refereed Journal)

(Multidisciplinary, Monthly, Multilanguage)

ISSN : 2584-2617 (Online)

Volume- 2, Issue- 3, March 2025

Website- www.pijst.com

DOI- <https://doi.org/10.62796/ pijst.2025v2i3003>

Significance of Photosynthesis in Plant Growth

Dr. Suman Gupta

PhD (Botony), Jammu University, Jammu

Abstract-

Photosynthesis is an essential biochemical process of plant growth and development, through which they use sunlight, water and carbon dioxide (CO₂) to form organic compounds. This process provides energy to plants, leading to their tissue formation, cell division, and the production of elements helpful in growth. Additionally, photosynthesis plays an important role in maintaining the amount of oxygen in the Earth's atmosphere, giving other organisms the resources they need for life as well. The effectiveness of photosynthesis depends on many factors, such as light intensity, CO₂ availability, water content, and temperature. Chlorophyll and photoreceptor pigments play an important role in this process, which help in converting light energy into chemical energy. In this paper, the process of photosynthesis, its factors, and its importance in plant growth and agricultural production have been discussed extensively. In addition, scientific measures to increase the efficiency of photosynthesis and its contribution to the Green Revolution have also been mentioned. The research also looks at future innovations in biotechnology and agronomy that can help sustain food production and environmental balance.

Key words: photosynthesis, plant growth, carbon dioxide, chlorophyll, oxygen production, bio-technology.

Introduction

Photosynthesis is a unique biochemical process, which is carried out by plants, algae and some special types of bacteria. This process is essential for life on Earth, as it is the major source of oxygen and biological energy. The growth, development and survival of plants depend entirely on photosynthesis, as this process helps in providing them with energy as well as the formation of other essential organic compounds.

Photosynthesis is essential not only for plants, but for the entire ecosystem. It contributes to maintaining the balance of the carbon cycle and oxygen cycle and ensures the presence of oxygen in the Earth's atmosphere.

Photosynthesis is the process by which green plants, algae and some bacteria use sunlight to produce glucose ($C_6H_{12}O_6$) and oxygen (O_2) from water (H_2O) and carbon dioxide (CO_2). In this process, the sun's energy is converted into chemical energy, which plants use for their growth and other biological functions. This process consists of two main steps - the light-dependent reactions and the light-independent reactions or Calvin cycle. In the photosynthetic phase, the sun's energy is stored in ATP (Adenosine Triphosphate) and NADPH (Nicotinamide Adenine Dinucleotide Phosphate), while in the dark reaction this energy is used in glucose formation. Chlorophyll is an important factor in photosynthesis, which absorbs light energy and makes it available for biochemical reactions. The oxygen produced by this process is released into the atmosphere, which is helpful in respiration for organisms.

Many scientists have made significant contributions to understanding and proving the concept of photosynthesis. In the 17th century, the Dutch scientist Jan van Helmont proved by his experiments that the growth of plants does not occur only from the soil, but water has an important contribution to it. Then, in the 18th century, Joseph Priestley concluded from his experiments that plants exchange gases from the atmosphere. They put the rat and a plant in a closed container and proved that plants release some kind of gas, which allows the rat to survive. This discovery clarified the role of plants in the production of oxygen.

In 1779 Jan Ingenhousz proved that this process is not possible without light. He also observed that only green plants can perform this action and this process can also be done by the small bacteria present in the water. In the 19th century Julius Sachs discovered the formation of starch in photosynthesis and proved that chlorophyll is the major component of this process. Next, Melvin Calvin discovered the Kelvin cycle in the 20th century, which explained how the process of glucose formation from carbon dioxide takes place. Photosynthesis is not only a means of providing energy for plants, but it is an essential process for their overall growth and survival. The growth and nutrition of plants mainly depends on this process. This energy is required for plant tissue formation, cell division and various biological functions. Additionally, glucose produced by photosynthesis is the primary energy source for plants, which is used in their various metabolic functions. It helps in the formation of essential nutrients in plants, among which protein, vitamins and carbohydrates are the main ones. The role of photosynthesis in agriculture is very important. It is necessary to understand and control the rate of photosynthesis to increase crop production. The availability of proper light, water and nutrients increases the productivity of the crop.

The mechanism of photosynthesis

The process of photosynthesis is a set of extremely complex biochemical reactions, which are performed by green plants, algae and some bacteria.

This process is accomplished mainly in the chloroplast located in the leaves. Photosynthesis is divided into two phases - light-dependent reactions and light-independent reactions. Light-dependent reactions occur in the thylakoid membrane, where energy from sunlight is captured to form ATP (Adenosine Triphosphate) and NADPH (Nicotinamide Adenine Dinucleotide Phosphate). In contrast, light-independent reactions take place in the stroma, where glucose is synthesised by the metabolism of carbon dioxide. Chlorophyll and other light absorbing pigments play an important role in this process.

Light-dependent reactions take place in the presence of sunlight and their main purpose is to convert light energy into chemical energy. This process occurs in the thylakoid membrane, where two major photosystems function - photosystem I and photosystem II. In the first of the light-dependent reactions, photosystem II absorbs sunlight, causing the emission of electrons. These emitted electrons move through the electron transport chain and in this process the dissolution of the water molecule takes place, generating oxygen, protons and electrons. Next, high energy electrons reach photosystem I and are re-emitted from here to form NADPH. During this entire cycle, ADP (adenosine diphosphate) is converted into ATP, which provides the energy source needed for the next stage of photosynthesis. This process is called photophosphorylation.

Light-independent reactions take place in the stroma, where the direct presence of light is not necessary, but the reaction depends on ATP and NADPH, which are produced in light-dependent reactions. This process is called the Calvin cycle, whose main function is to convert carbon dioxide into carbohydrates.

The Calvin cycle takes place in three stages:

- (i) Carbon fixation - In this step, the enzyme rubisco (ribulose-1,5-bisphosphate carboxylase / oxygenase) combines carbon dioxide with the 5-carbon compound rubulose biphosphate (RuBP), forming the 3-carbon compound phosphoglycerate (PGA).
- (ii) Reduction and Regeneration - In this step, PGA is converted to Glyceraldehyde-3-phosphate (G3P) with the help of ATP and NADPH, which is useful for glucose formation.
- (iii) Regeneration of RuBP - In this step, some molecules are converted back to RuBP, so that the cycle can start again.

Factors affecting photosynthesis

Photosynthesis is a complex biochemical process, which is influenced by various internal and external factors. This process provides the energy necessary for plant growth and development, but its efficiency depends on various biological and environmental conditions. The factors that affect the rate of photosynthesis can be mainly divided into two parts - internal factors and external factors. Internal factors relate to the structure and biological characteristics of the plant, while external factors are based on environmental conditions. The balance of these factors determines the photosynthetic ability of plants.

Internal Factors: The internal components of plants directly affect the ability of photosynthesis. These mainly include leaf structure, regulation of pores and chlorophyll content. The leaf structure and shape are important factors affecting the rate of photosynthesis. In large and thin leaves light absorption is more effective, which increases the rate of photosynthesis. In addition, the internal cellular arrangement of the leaves, such as the presence of palisades and spongy mesophylls, controls the diffusion of carbon dioxide, allowing the process of photosynthesis to take place smoothly. Stomata are essential for the exchange of gases in plants. During photosynthesis, the pores are helpful in the absorption of carbon dioxide and the removal of oxygen. The opening and closing of pores depends on the internal water balance and environmental conditions. If there is a lack of water, the pores become clogged, which limits the availability of carbon dioxide and reduces the rate of photosynthesis. Chlorophyll is an extremely important pigment for photosynthesis, which absorbs light energy and converts it into chemical energy. If the amount of chlorophyll in the plant decreases, the rate of photosynthesis decreases. The amount of chlorophyll depends on the nutritional status of plants, the availability of nitrogen and magnesium.

External Factors: The process of photosynthesis is also influenced by external environmental conditions. These are intensity of light, concentration of carbon dioxide, temperature and availability of water. Sunlight acts as a source of energy for photosynthesis. If the intensity of light is high, the rate of photosynthesis also increases, but its excess after a certain limit can harm the cells. Excessive intense light can cause photo-inhibition, which affects plant productivity.

Carbon dioxide is a major component of photosynthesis. If its concentration is high in the environment, the rate of photosynthesis also increases, because it is used in the Calvin cycle. However, despite its abundance, its effectiveness may be limited due to other factors such as the availability of enzymes and temperature.

The enzymes that participate in photosynthesis are temperature dependent. Ideally, photosynthesis is most effective at a temperature of 25-35 °C. Enzymes can become inactive at extremely high temperatures, causing a decline in the rate of photosynthesis. At the same time, photosynthesis slows down in extremely cold environments, because enzymes are less active.

Water is an essential component for photosynthesis, as it provides oxygen and protons through the photolysis process. If there is a lack of water, plants close their pores, which inhibits the entry of carbon dioxide and reduces the rate of photosynthesis.

The role of photosynthesis in plant growth and development

Photosynthesis is the basis of plant life, which not only produces energy, but also plays an important role in the growth and development of plants. This process converts sunlight into chemical energy to provide plants with the energy needed for their biological functions. Plant tissue structure, cell division, growth and crop production all depend on the effectiveness of photosynthesis. This process contributes to glucose

production in plants, energy storage, cell division and stretching, and biomass accumulation, which also affects agricultural production. These different roles of photosynthesis have been discussed in detail in this study.

During the process of photosynthesis, plants use energy from sunlight to produce glucose ($C_6H_{12}O_6$) from water (H_2O) and carbon dioxide (CO_2). Glucose is the primary energy source for plants, used through cellular respiration. Additionally, compounds such as ATP (Adenosine Triphosphate) and NADPH (Nicotinamide Adenine Dinucleotide Phosphate) formed during photosynthesis provide energy for plant growth. The presence of ATP and NADPH is essential for the biochemical activities of plants, as these compounds are helpful in carbon fixation Calvin cycle. Also, part of the glucose is stored as starch, which acts as an energy source for plants under adverse conditions.

An important component of plant growth and development is cell division and cell elongation, which depends on the effectiveness of photosynthesis. The energy and biochemical compounds produced during photosynthesis are essential for the formation and growth of plant cells. ATP and NADPH provide energy for cell division, which leads to the formation of new cells. In addition, the products of photosynthesis, such as glucose and amino acids, help in the formation of the cell wall. As a result of this, tissue formation in plants, the development of new leaves and roots occurs smoothly. In addition, the production of growth hormone such as Auxin is also affected by photosynthesis. This hormone helps to increase cell stretch and plant length. If the rate of photosynthesis slows down, the cells cannot get enough energy and nutrients, which can inhibit plant growth.

The total biomass formation of plants depends on the rate of photosynthesis. Organic compounds produced by photosynthesis, such as sugars, lipids, and proteins, help form various plant tissues. The role of photosynthesis is very important in crop production. Crops with higher photosynthesis rate produce more amount of biomass, which increases their yield. For example, the higher the rate of photosynthesis in major crops such as wheat, paddy, and maize, the higher the yield. Additionally, the availability of carbon dioxide in the atmosphere, light intensity, and water supply also affect the productivity of crops. If these factors are kept in balance, the efficiency of photosynthesis can be increased, which makes it possible to increase food production.

Photosynthesis is the primary process of energy production and the formation of biological molecules in plants. It not only helps in the synthesis of organic matter but also affects the overall metabolic activities of plants. There is a strong link between photosynthesis and plant metabolism, which regulates the processes of cellular respiration, nitrogen and carbon cycles, and the formation of secondary metabolites.

There is an interrelationship between photosynthesis and respiration, which maintains the energy balance of plants. Glucose and oxygen produced during photosynthesis are the main sources for cell respiration, while carbon dioxide and water produced by cell respiration meet the requirements of photosynthesis. Thus, these two processes are

complementary to each other. Cells produce energy through respiration, which is stored in the form of ATP (adenosine triphosphate). This energy is required for cell division, growth, and biochemical reactions. If the balance between photosynthesis and respiration is disturbed, plant growth may be inhibited. For example, if the respiratory rate increases excessively and the rate of photosynthesis decreases, the plant may lack energy, which slows its growth. It is necessary to maintain this balance in the ecosystem, as it affects not only the growth and development of plants, but also the entire food chain and carbon cycle.

Nitrogen and carbon play an important role in photosynthesis and plant metabolism. Carbon compounds produced by photosynthesis under carbon metabolism are used in various biochemical processes, including the synthesis of sugars, lipids, and amino acids. Nitrogen metabolism is also affected by photosynthesis. Carbohydrates produced during photosynthesis combine with nitrogen to form important compounds such as proteins, enzymes, and chlorophyll. In particular, the absorption and utilisation of compounds such as nitrate (NO_3^-) and ammonia (NH_4^+) depend on the energy produced by photosynthesis. The balance of nitrogen and carbon metabolism controls the overall growth of plants. If plants are deficient in nitrogen, the formation of chlorophyll can be disrupted, reducing the rate of photosynthesis and weakening the plant.

Photosynthesis not only helps in primary energy production, but it also plays an important role in the formation of secondary metabolites. Secondary metabolic compounds are those biological products, which are helpful in strengthening the immune system of plants, protecting them from environmental stress and providing medicinal properties. Compounds such as flavonoids and alkaloids are made using organic substances produced by photosynthesis. Flavonoids act as antioxidants in plants and provide protection from ultraviolet (UV) rays.

Alkaloids, which are found in many medicinal plants, are produced as a result of biochemical reactions and are known to have various medicinal uses. For example, alkaloids like morphine and nicotine, which are produced by plants, play an important role in pharmacology.

Photosynthesis and Agricultural Productivity

Photosynthesis plays an important role in increasing agricultural productivity. This process is helpful in providing energy to the plants as well as in the formation of carbohydrates, proteins and other organic compounds, which are essential for the growth of crop production. Scientists are researching new ways to increase the efficiency of photosynthesis to ensure global food security. Under this, modern techniques like genetic modifications, advanced photosynthetic pathways like C4 and CAM pathways, and greenhouse farming and precision agriculture are being used. The efficiency of photosynthesis is a key factor for increasing agricultural production. The productivity of plants depends on the effectiveness of this process, as it regulates carbohydrate production, biomass accumulation and crop growth. Crops with higher photosynthesis rates produce more biomass, which increases their yield. In efforts to develop super crops, scientists are selecting varieties with greater photosynthetic capacity. For example, crops such as rice and

wheat are having their leaf area optimised to increase photosynthetic capacity. In addition, the productivity of crops can also be increased by increasing the amount of carbon dioxide or by controlling water loss during photosynthesis.

Compared to conventional C3 plants, C4 and CAM plants have higher photosynthetic rates. Scientists are now using genetic modification to make C3 plants more efficient, allowing them to generate more energy and reduce water consumption. C4 plants, such as maize and sugarcane, are found to have an advanced carbon fixation process, capable of producing more carbohydrates even under high temperature and low carbon dioxide conditions. Researchers are now making efforts to implement the C4 mechanism in C3 crops such as wheat and rice, thereby increasing their productivity. Similarly, the CAM (Crassulacean Acid Metabolism) pathway is found in plants that grow in arid climates, such as cactus and pineapple. Efforts are being made to transfer this path to other crops, so that they can produce more carbohydrates even with minimal consumption of water.

Innovative methods such as greenhouse farming and precision agriculture are being used to increase the efficiency of photosynthesis. In greenhouse farming, crop production is maximised by controlling environmental conditions. This includes increasing the concentration of carbon dioxide, controlling the intensity of light and optimising the temperature, which leads to a higher rate of photosynthesis. Precision agriculture uses technologies such as sensors, drones, and artificial intelligence (AI) to help monitor and optimise the photosynthetic process. For example, farmers can now use drones, which can analyse the photosynthetic capacity of leaves to suggest how much sunlight, water and nutrients the crops need.

photosynthesis and the food chain

Photosynthesis is the foundation of all of Earth's ecosystems. This process provides energy to the primary producers, thereby driving the entire food chain. This energy is passed through various trophic levels ensuring the survival of organisms and the stability of the ecosystem. Organic matter produced by plants not only forms the basis of nutrition for primary consumers, but is also an indirect source of energy for secondary and tertiary consumers. The higher the efficiency of photosynthesis, the more biomass will be generated and the more effective the food chain balance will be.

Primary productivity in an ecosystem depends on the rate of photosynthesis. Primary productivity is the biomass produced by plants and other photosynthesising organisms using sunlight. There are two types of primary productivity: Gross Primary Productivity (GPP) and Net Primary Productivity (NPP). Gross primary productivity is the total energy that plants produce through photosynthesis. Part of it is used by plants in respiration, while the rest of the energy is stored as net primary productivity (NPP), which forms the basis of nutrition of herbivorous organisms and other consumers.

The energy produced by plants through photosynthesis is further transferred through the trophic levels. The principle of energy flow in

the food chain refers to how energy is transferred from one level to another.

1. Primary producers: Plants, algae and some bacteria take energy from sunlight and produce organic matter by photosynthesis.
2. Primary consumers (herbivores) obtain energy by consuming plants.
3. Secondary consumers Carnivores eat herbivores and thus obtain energy.
4. Tertiary consumers Top predators eat secondary consumers and complete the energy flow.

The energy flow in the food chain acts as a pyramid, in which some part of the energy is expended as heat at each level. Therefore, the amount of energy reaching higher nutrition levels decreases. If there is a decrease in the rate of photosynthesis, the entire food web can become unbalanced, which can have a negative impact on the ecosystem.

Conclusion

Photosynthesis is not only essential for plant growth and development, but it also plays an important role in maintaining the balance of the entire ecosystem and agricultural production. This process produces biological energy by absorbing carbon dioxide, which is essential for plants as well as other organisms. Additionally, it also contributes to controlling the global climate, maintaining biodiversity and keeping the food chain balanced. Photosynthesis is not just a biological process, but the basis of the entire life cycle. It is not only essential for plant growth and development, but also plays an important role in agricultural production, environmental balance, and global climate stability. In the coming years, the research done in this area can open new possibilities, which will make the ecosystem more balanced. The efficiency of this process can be increased by using modern scientific techniques, such as genetic improvement, precision agriculture and artificial photosynthesis, thereby bringing revolutionary changes in the environmental and agricultural sector.

References:

1. Pandey, S. N., & Sinha, B. K. (2006). *Plant physiology* (4th ed., pp. 130–132). New Delhi: Vikas Publishing House.
2. Verma, S. K. (2007). *Textbook of plant physiology* (p. 120). New Delhi: Ane Books India.
3. Kochhar, S. L., & Gujral, S. K. (2012). *Comprehensive practical plant physiology* (pp. 95–110). Delhi: Macmillan India.
4. Srivastava, H. N. (2000). *Plant physiology* (pp. 85–86). New Delhi: Pradeep Publications.
5. Sinha, R. K. (2007). *Modern plant physiology* (pp. 140–144). New Delhi: Narosa Publishing House.
6. Raghavendra, A. S., Sane, P. V., & Mohanty, P. (2005). Photosynthesis research in India: Transition from yield physiology into molecular biology. *Current Science*, 89(7), 1122–1124.
7. Sengar, R. S., & Singh, R. (2018). Hormonal impact on photosynthesis and

photoprotection in plants. Indian Journal of Experimental Biology, 56(9), 665–667.

8. Maheshwari, S. C. (2003). A rise of experimental plant physiology in India – A personal view. In Souvenir: 2nd International Congress of Plant Physiology (pp. 9–13). New Delhi: Indian Society for Plant Physiology.
9. Das, V. S. R. (2004). Photosynthesis: Historical perspectives and current trends (pp. 70–72). Hyderabad: Universities Press.
10. Taiz, L., & Zeiger, E. (2015). Plant physiology and development (6th ed., pp. 140–147). New Delhi: Sinauer Associates (Indian Edition: Oxford University Press).

Cite this Article-

"Dr. Suman Gupta", *"Significance of Photosynthesis in Plant Growth"*, *Procedure International Journal of Science and Technology (PIJST)*, *ISSN: 2584-2617 (Online)*, *Volume:2, Issue:3, March 2025*.

Journal URL- <https://www.pijst.com/>

DOI- <https://doi.org/10.62796/ pijst.2025v2i3003>

Published Date- 02/03/2025

