

Procedure International Journal of Science and Technology

(International Open Access, Peer-reviewed & Refereed Journal)

(Multidisciplinary, Monthly, Multilanguage)

ISSN : 2584-2617 (Online)

Volume- 2, Issue- 6, June 2025

Website- www.pijst.com

DOI- <https://doi.org/10.62796/ pijst.2025v2i6004>

Role of Beneficial Microorganisms in the Biological Control of Soil-Borne Plant Pathogens: A Sustainable Approach in Agriculture

Rajesh Tiwari

Department of Botany, PDM University, Haryana

Abstract

Soil-borne plant pathogens such as Fusarium, Pythium, Rhizoctonia, and Sclerotium pose significant threats to global agricultural productivity, particularly in intensively cultivated regions like India. Excessive reliance on chemical pesticides has led to environmental degradation, development of resistant pathogen strains, and health hazards. In this context, beneficial microorganisms—especially Plant Growth-Promoting Rhizobacteria (PGPR), Trichoderma spp., and mycorrhizal fungi—have emerged as eco-friendly biocontrol agents that suppress pathogens, improve soil fertility, and enhance crop productivity. These microorganisms employ mechanisms such as antibiosis, niche competition, parasitism, and induced systemic resistance to control phytopathogens in the rhizosphere. Indian field studies have shown that microbial consortia composed of *Pseudomonas fluorescens*, *Bacillus subtilis*, and *Trichoderma harzianum* can significantly reduce the incidence of wilt and damping-off diseases in crops like chickpea and brinjal. Despite promising results, biocontrol implementation faces practical challenges including inconsistent field efficacy, formulation stability, regulatory hurdles, and lack of farmer awareness. Technological advances, including microbial genome editing and consortia-based bioformulations, are improving the adaptability and effectiveness of biocontrol strategies. This paper reviews the mechanisms, case studies, constraints, and future prospects of microbial biocontrol in sustainable agriculture. Strengthening research, regulatory clarity, and farmer education are essential for the wider adoption of biological control as a viable alternative to chemical inputs. Integrating microbial biocontrol with conventional pest management can ensure sustainable crop protection, biodiversity conservation, and food security in the face of mounting ecological and economic challenges.

Keywords: Biological control, PGPR, Trichoderma, Mycorrhiza, Soil-borne pathogens, Rhizosphere microbiota, Sustainable agriculture.

Introduction

Diverse microorganisms promote plant growth and suppress soil-borne pathogens of rice, wheat, tomatoes, and other crops. The development of more agricultural land has led to indiscriminate application of pesticides and fungicides, which cause direct threats to humans and the environment. Application of beneficial microorganisms such as plant growth-promoting rhizobacteria (PGPR), *Trichoderma* species, mycorrhizae, and other rhizospheric microorganisms constitutes an environment-friendly alternative to these chemicals. Biological control agents produce antibiotics, volatile compounds, and siderophores while competing for nutrients and colonizing the rhizosphere, thereby protecting plants from fungal pathogens through mechanisms such as mycoparasitism. Continued efforts are necessary to increase food and nutrition across the world without causing environmental harm. Beneficial microorganisms can play a key role because of their versatile approaches to sustained agricultural development and enhanced productivity.

Concepts of Biological Control

Biological control of plant diseases is a sustainable crop protection approach that employs living organisms to eradicate or suppress the damage caused by plant pathogens, thereby maintaining a balance among the involved agents. These organisms act either directly against the pathogen or indirectly by inducing systemic resistance or strengthening plant defense mechanisms. Contrasting with chemicals, which kill a wide range of organisms and impose a prolonged selective pressure on target organisms, biocontrol agents contribute to ecosystem health and restore natural microflora and fauna balance. Several physical and chemical factors may affect the performance of biocontrol agents; however, the unpredictability and inconsistency of their efficacy under different environments limit their widespread use.

However, the increased application of fungicides has resulted in several adverse effects, such as fungicide-resistant mutants, toxic residues in food commodities, and deleterious impacts on soil health and the environment. These problems encouraged researchers to explore disease management measures that were less harmful and eco-friendly. Consequently, biological control has attracted significant interest as an alternative, effective, and safe plant protection system against a broad spectrum of phytopathogens, including fungi, bacteria, and nematodes.

Microbial biocontrol agents regulate the activity and spread of targeted phytopathogens either locally or systemically, suppress structural development, formation of spores, and the accumulation of toxins, or induce systemic resistance and fortify the plant defense systems. Several antagonistic bacteria and fungi are efficient biological control agents. They remediate plant pathogens in the rhizosphere and aerial parts of the plants and promote the growth of healthy plants in stressed environments. Plant growth-promoting bacteria—such as *Pseudomonas*,

Bacillus, Stenotrophomonas, and Serratia species; mycorrhizal fungi Glomus mosseae; arbuscular mycorrhizal fungi; and Trichoderma species—are among the most efficient mechanisms for biological control of soil-borne phytopathogens and phytoparasitic nematodes. Nonetheless, their inconsistent results and instability in the field constitute a limiting factor in their use over time and space.

Future challenges will focus on the formulation of biofungicides, biofertilizers, and methods to promote their dissemination. One research direction involves improving the efficacy and bioactivity of those antagonists through genetic engineering metaphors. Additionally, efforts to enhance the physiological performance of inoculants and design formulations compatible with agricultural practices are crucial. Biocontrol offers a natural alternative to replace agro-chemicals; thus, developing a better understanding of the microbial diversity associated with a beneficial biocontrol agent and assessing its interactions with the ecosystem are important. Pesticide industry stakeholders have started to optimize biopesticide formulations, which represent a promising solution for sustainable agriculture worldwide.

Mechanisms of Action

A variety of microbiological processes contribute to inhibition or suppression of soil-borne plant pathogens in the rhizosphere, such as antibiosis, competition, parasitism, and induced resistance. Antibiosis involves production of antibiotics or volatile organic compounds directly inhibiting pathogens. Competition for niche and nutrients limits pathogen development by resource depletion. Parasitism includes mycoparasitism and hyperparasitism, whereby one microorganism parasitizes pathogen structures, reducing their viability. Induced resistance triggers systemic plant defenses, bolstering immunity against pathogens.

Beneficial microorganisms therefore may rely on several mechanisms to antagonize soil-borne pathogens and thus serve as important biocontrol agents in sustainable agriculture. In particular, plant growth-promoting rhizobacteria (PGPR), Trichoderma species, mycorrhizal fungi, and native rhizospheric microbial communities provide naturally selected microbial populations that suppress pathogens. Beneficial microbes can act directly by producing growth regulators, stimulating the plant immune system, and restricting pathogen development through antagonistic activities. Studies conducted mainly in India illustrate how naturally selected microbial populations may provide sustainable biocontrol for the soil-borne pathogens Fusarium and Pythium.

Roles of Plant Growth-Promoting Rhizobacteria (PGPR)

Plant growth-promoting rhizobacteria (PGPR), rhizobial species, and certain nitrogen-fixing microorganisms constitute an important group of organisms responsible for enhancing the richness of micronutrients in the soil. Consequently, PGPR play a critical role in increasing the productivity of essential crops by re-mobilizing critical nutrients in the rhizosphere. The stringent demand for a safe and bio-friendly approach to agriculture is met by the utilization of PGPR, as they play an

important role in sustainable crop production and currency in their use is growing rapidly throughout the world. The modes of action of PGPR include accelerating seed emergence and plant stand, stimulating plant growth, solubilizing minerals, producing siderophores, enhancing tolerance to abiotic stress, and controlling pathogen-mediated disease. PGPR induce changes in rhizosphere microbial communities that modulate plant–soil feedback and influence nutrient cycling as well as pathogen protection (Kong & Liu, 2022). Plant-growth-promoting rhizobacteria exhibiting antagonism to different phytopathogens have been isolated worldwide, and secondary metabolites produced by these rhizobacteria have been reported. Some of these secondary metabolites act as key intermediates involved in the production of a variety of antibiotics that not only offer direct anti-pathogenic effects but also induce systemic resistance in plants against phytopathogens, conferring a competitive advantage on biocontrol agents colonizing the roots. Synergism between antibiotic production and induced systemic resistance further augments the host resistance to plant pathogens (Singh et al., 2017). PGPR influence plant growth and yield by exhibiting antagonistic activity against soil-borne pathogens such as *Rhizoctonia solani*, *Fusarium* species, *Pythium* species, *Phytophthora* species, *Sclerotium* species, and *Meloidogyne* species, and by producing several growth substances. Further details of the mechanisms underlying these effects appear in the section titled “Mechanisms of Action”.

Trichoderma as a Biocontrol Agent

Among beneficial microorganisms, the genus *Trichoderma* comprises a group of soilborne filamentous fungi encompassing species such as *T. harzianum*, *T. virens*, *T. koningii*, *T. atroviride*, and *T. longibrachiatum*, which effectively antagonize pathogenic fungi and nematodes. Several species can exert protective effects against fungal diseases. Most notably, *Trichoderma* species are potent biocontrol agents capable of controlling diverse plant pathogens both in the laboratory and in agricultural fields. Unlike some biological control agents, multiple species can regulate large numbers of pathogens. Species such as *T. atroviride* and *T. harzianum* are among the strongest and most extensively employed mycoparasites. *Trichoderma*-based formulations have been utilized to promote plant growth and increase crop yield. Field application of such products warrants further attention, especially since biocontrol efficacy is often assessed in vitro. Aside from the fungus itself, secondary metabolites or nanoparticles biosynthesized using *Trichoderma* can also be employed to enhance plant growth or inhibit pathogen development. Isolating *Trichoderma* strains from local environments may help avoid the introduction of foreign species into ecosystems. The genus constitutes the best-studied fungal biocontrol agent, yet field-level efficacy remains unpredictable due to limited understanding of *Trichoderma*–plant–pathogen interactions. Elucidating the molecular dialogues governing these ecological relationships will enable exploitation of full biocontrol potential. In addition to mycoparasitism, *Trichoderma* species exhibit antagonism toward nematodes and insects through a variety of mechanisms, addressing both soilborne and aerial disease cycles. Detailed assessment of interactions with other soilborne microorganisms

is necessary to clarify their role within the plant microbiome. The application of *Trichoderma*-based formulations to field conditions constitutes a promising avenue for further investigation.

Mycorrhizal Associations

Mycorrhiza refers to the diverse group of mutualistic associations that exist between fungi and the roots of most plant species. The fungus obtains a supply of carbohydrates from the plant and provides enhanced access to soil nutrients, particularly phosphorus (Niu et al., 2020). Additional benefits of mycorrhizal colonization include the enhanced uptake and translocation of micronutrients, resistance to root pathogens and heavy metal toxicity, improved soil structure, bio-control of plant-parasitic nematodes and environmental stresses.

Rhizospheric Microbial Interactions

The rhizosphere harbours a large diversity of soil microorganisms. It is a dynamic environment where beneficial microorganisms, pathogens and microbial communities interact with the plant root, and among each other, in multiple and often subtle ways. PGPR, mycorrhizal fungi and *Trichoderma* spp. command special attention, since the beneficial effect of these individual agents in terms of growth and development of plants has been amply documented. When co-inoculated, however, the effect frequently is antagonistic at the expense of plant, suggesting that PGPR and *Trichoderma* or mycorrhizal fungi occupy similar rhizosphere niches and establish mutually inhibitory interactions; this is confirmed by recent experiments in the laboratory and in the field in India discussed below. Despite extensive, targeted investigations, models cannot yet fully explain the organisation of rhizosphere populations in relation to microbial interactions that are reviewed here for the first time. Biocontrol, the use of antagonistic soil microorganisms to control soilborne diseases, is a necessary component of sustainable agriculture. Biological control associated to PGPR, mycorrhiza and *Trichoderma* species also deserves special interest because several strains have proven able to control the main soilborne pathogens of important crops around the world.

Most work derives from western countries, but special attention is devoted to the case of India where soilborne diseases exert a strong effect on agricultural production and many plants are grown under relatively stringent environmental conditions. Selected examples of the action of biocontrol agents against *Fusarium* (mainly *Fusarium oxysporum*) and *Pythium*, two of the most representative soilborne pathogens affecting many important crops, are reproduced. Other soilborne pathogens involved (e.g. *Rhizoctonia*, *Phytophthora*, *Alternaria*, *Sclerotinia*, *Macrophomina*, *Meloidogyne*) are briefly discussed.

Suppression of Soil-Borne Pathogens

Soil-borne fungi and oomycetes cause widespread damage to a variety of commercial crop plants worldwide. Sclerotia of *Rhizoctonia solani* affect potato underground sprouts and the seed tuber and are associated with root, stem and leaf infection in various genera of wood plants such as *Acacia*, *Citrus*, and *Cinnamomum*. *Fusaria* are frequently isolated

as root endophytes in the ginseng rhizosphere and as development on pan axillary buds and roots of Clementine and Murcott tangerines, respectively. Sclerotia of *Sclerotinia sclerotiorum* germinate and produce apothecia which infect a large range of plants, mostly situated near the soil surface such as broad bean, sunflower and cabbage. Resting structures of *Sclerotium rolfsii* (circular sclerotia) also infect a wide range of horticultural plants of tropical regions. Although other fungi such as *Phoma* and *Thanatephorus* participate in the degradation of the sclerotia and inhibit their survival in the soil, none of the other microorganisms is able to colonize sclerotia entirely. Although soil treatment with various pesticides used to be effective, resistances of microorganisms towards many biological and chemical active compounds have developed and led to bioaccumulation and long-term environmental pollution. In addition, some pathogens show large resistances to certain pesticides and escape soil and plant treatment. Many microbial strains have, therefore, been evaluated as alternative bio-control agents.

Biological control (biocontrol) of phytopathogenic microorganisms relies on the direct or indirect antagonistic interaction between populations of living bacteria or fungi and pathogenic microbiota (Figure 4). Pioneering studies of biocontrol mechanisms demonstrated that a high density of competitive or antagonist microflora prevented fungal pathogen proliferation. Hence, numerous now standard biocontrol approaches aim to amplify natural plant protection systems: mechanisms include antibiosis (presence of broad-spectrum antibiotic compounds), niche exclusion (competition for space and nutrients), parasitism and predation (breakdown and consumption of pathogen mycelium), stimulation of induced systemic resistance (ISR: induced plant defence reactions triggered by pathogen or elicitors) and the production of cell-wall-degrading enzymes that directly inhibit pathogens. A specific biocontrol agent may combine several of these effects; for example, *Pseudomonas chlororaphis* produces antibiotic compounds (phenazines, pyrolinotrin and hydrogen cyanide), competes with fungal pathogens for iron and sulphur sources, degrades fungal cell walls using chitinase and triggers systemic resistance in the host plant. Several genera known for the biocontrol of phytopathogenic fungi are described below: pseudomonads, bacilli and streptomycetes (i.e., plant growth promoting rhizobacteria or PGPR in the following sections) as well as mycorrhizal fungi and the fungus *Trichoderma*.

Numerous well-documented examples of biocontrol illustrate the effective suppression of *Fusarium* pathogens by various genera. Of major economic importance, *Fusarium* wilt affects a broad range of plants including cotton, tomato, potato, banana and palm. So far, biocontrol by native PGPR represents a valuable sustainable tool and efficient alternative to fungicides. In India, *Fusarium*, *Pythium* and *Rhizoctonia* are the most destructive soil-borne pathogens that cause damping off and wilt diseases leading to severe crop losses. The most common *Fusarium solani* strain also induces root rot and wilt on chickpea and is responsible for the collapse of mature plants. However, the integration of PGPR strains with efficient control mechanisms clearly leads to the suppression of significant crop losses due to soil-borne pathogens. These

biological control agents have a high potential for development as biopesticide formulations, either individually or in compatible microbial consortia, to efficiently control the soil-borne diseases affecting chickpea production in India. Although a large number of biopesticides are manufactured by development companies around the world, only a few of these preparations focus on the *Pythium* species.

Case Studies from India

Plant pathogens constitute one of the major factors responsible for world-wide reduction in crop yields and damage of storage products resulting in huge economic losses. Among the different groups of antagonistic micro-flora of the rhizosphere associated with plant debris and natural substrates, *Trichoderma* species are highly potent biocontrol agents against a number of phytopathogenic fungi that have become a serious threat in agriculture, horticulture and forestry. *Trichoderma* species are also used as biofertilizers, because of their positive effects on plant growth. The genus *Trichoderma* has subsequently been extensively utilized worldwide for biocontrol programmes and other commercial applications. Species of *Trichoderma* have been found very effective in reducing the incidence of various diseases caused by *Fusarium*, *Pythium*, *Rhizoctonia*, *Sclerotium* and *Macrophomina* in India. Bacteria are also more frequently used as biocontrol agents under field conditions; most of these are Gram-negative and fluorescent. They include species of *Pseudomonas*, *Bacillus*, *Burkholderia*, *Serratia*, *Erwinia* and *Agrobacterium*, with *Pseudomonas* being the most widely studied and deployed genus. Other bacteria with antagonistic capability belong to *Arthrobacter*, *Alcaligenes* and *Enterobacter*.

Field Studies on Fusarium Control

Soil-borne diseases continue to threaten global crop production, and management strategies are currently unsatisfactory. Biological control offers realistic alternatives to chemical fungicides and fumigants currently used against many soil-borne fungi and oomycetes. The effectiveness of biocontrol in the field is dependent on the selection of suitable microorganisms for antagonistic activity. Although bacteria like fluorescent *Pseudomonas* spp., *Bacillus* spp. and lactic acid bacteria, and fungi like *Gliocladium* and *Trichoderma* are known antagonists of plant pathogens, careful selection of strains is required for effective field and storage applications.

Emerging pathogenic *Fusarium* races necessitate effective and new control strategies. Available options include cultural practices, biological control and chemical strategies. Chemical options include fungicides such as benomyl, prochloraz and fludioxonil. Resistant cultivars remain the most efficient and recommended control measure. Cultural options comprise soil fumigation, crop rotation, cover cropping and avoidance of previously infected fields.

Field investigations using potential biocontrol agents isolated from various sources were carried out at four locations in southern India to manage *Fusarium* wilt of chickpea. Twenty bacterial antagonists were tested along with two commercial biofungicides under chickpea monocropping at Anantapur, Ranga Reddy and Kurnool districts during

two cropping seasons. Several antagonists were effective at Anantapur and Rangareddy in reducing disease incidence and enhancing yields; however, Kurnool showed no significant effect. In another field study at three locations in Maharashtra, India, 17 antagonists were evaluated under monocropping of chickpea. Bacterial strains were consistently superior to the fungal antagonist *Trichoderma harzianum* in minimizing wilt incidence while enhancing yield. Other studies reported on the efficacy of selected antagonists against *Fusarium oxysporum* f. sp. *ciceris*, the wilt pathogen of chickpea, in various cropping systems, including non-chemical alternatives in sustainably managing soil-borne diseases and agricultural technologies for plant health in eggplant cultivation.

Pythium root rot and damping-off incur significant economic losses in glasshouse crops worldwide. Application of fungicide drenches and biocontrol strategies offers the primary means of control for Pythium root rot. *Trichoderma harzianum* T-22 and other biocontrol agents have shifted research perspectives in this field. Soil communities and biocontrol activity together constitute a key component of suppressive soils. Microbial-based activity depends on factors including substrate composition, pH, nutrient content, and biological activity.

Several formulations of beneficial bacteria such as *Bacillus subtilis* strains have demonstrated biocontrol potential against Pythium species. Bioprotectants based on isolated *Bacillus* spp. have been developed and tested in soilless substrates during hydroponic seedling production. Recent studies have evaluated several biocontrol agents for Pythium root disease management in hydroponic and soilless systems. Biocontrol of Pythium by *Pseudomonas cepacia* and *Bacillus* spp. offers the added benefits of inducing systemic resistance against foliar pathogens and promoting plant growth. Screening high numbers of microorganisms remains essential for successful biological control of plant pathogens.

Challenges in Implementation

Although the potential of biological control agents applied against soil-borne phytopathogens in India has been confirmed repeatedly, large-scale successes in the field are relatively less frequent due to various bottlenecks and constraints. The conversion of a promising isolate into a commercially viable product remains a challenge. Bioformulations need huge investment, continuous monitoring, maintenance, and proper quality checks during production in order to be effective and sustainable. Along with scientific limitations, farmers' preferences and socio-economic, political, and technical constraints to adoption become significant hurdles. Furthermore, the deterioration of biodiversity has posed another major challenge. Therefore, the successful implementation of biological control will require careful consideration of these bottlenecks and challenges, and the adoption of a multidisciplinary approach comprising economists, academicians, horticulturists, and agriculturists.

Despite the existing challenges, research on biological control agents and their eco-friendly properties continues globally. Owing to enormous ecological pressure exerted by the use of non-specific chemical fungicides against fast-mutating strains, research has intensified in the quest for

effective formulations with better shelf life. These complements can be extended to the field to restrict soil-borne pathogens and prevent diseases. Various methods are associated with biological control, such as the utilization of pesticides, crop rotation, soil solarization, biofumigation, etc. Thus, biological control is being widely used in association with approved integrated pest management (IPM) strategies for sustainable and eco-friendly plant disease control.

Integration with Integrated Pest Management

Integrated Pest Management (IPM) is globally accepted to mitigate over-dependence on chemical insecticides and their environmental effects. Biological control forms a cornerstone of IPM, exploiting natural enemies such as predatory insects, parasitoids, and microbial pathogens (Gopalakrishnan et al., 2014). Microorganisms from diverse origins enhance plant defense against herbivores by stimulating growth, promoting resistance responses, and delivering feeding deterrence or antibiosis. Rhizospheric, phyllospheric, and endospheric microorganisms induce plant-specific responses to herbivore attacks, while those inhabiting floral nectar and insect honeydew produce volatile organic compounds that attract beneficial insects. Consequently, IPM programmes should exploit the full spectrum of microbial benefits to augment plant defense and bolster natural enemy effectiveness.

Future Directions in Research

Further research initiatives should be oriented towards tailoring beneficial microbiomes to specific crop agro-environments and refining strategies to maintain soil microbial diversity. Exploiting these approaches offers potential for substantially improving soil resilience and crop performance while enabling significant reductions in the use of agrochemical products. Effective implementation of these research directions is anticipated to contribute to sustainable agricultural production. Simultaneously, increasing trends for application of microbial consortia are expected; however, questions concerning registration processes and the regulatory framework for these products remain unresolved. Progress in scientific communication and the enhanced role of meta-analyses also deserve attention in ongoing studies.

Conclusion

Beneficial microorganisms have demonstrated the ability to efficiently address the task of controlling soil-borne plant pathogens in a sustainable manner, despite numerous and complex challenges, particularly in the Indian context. However, the efficacy of these biological agents is not consistent under all field conditions, indicating a need for continued research to fully realize their potential in practical applications. Argentina has similarly embraced the use of *Pseudomonas fluorescens* and *Trichoderma* in integrated pest management (IPM) programs since the late 1990s, reflecting a broader global interest in sustainable biocontrol strategies.

Author's Declaration:

The views and contents expressed in this research article are solely those of the

author(s). The publisher, editors, and reviewers shall not be held responsible for any errors, ethical misconduct, copyright infringement, defamation, or any legal consequences arising from the content. All legal and moral responsibilities lie solely with the author(s)

References

1. Gopalakrishnan, S., Srinivas, V., Prakash, B., & Ratnakumar, P. (2014). Evaluation of biocontrol potential of *Bacillus* and *Pseudomonas* spp. against *Fusarium* wilt and dry root rot of chickpea. *Archives of Phytopathology and Plant Protection*, 47(14).
2. Kong, H. G., & Liu, H. (2022). The role of PGPR in biocontrol of soil-borne pathogens: Mechanisms and field performance. *Frontiers in Microbiology*, 13, 845960.
3. Singh, H. B., Mishra, S., Kumar, P., & Arora, D. K. (2017). Biological control of plant pathogens: Current concepts. In D. K. Arora (Ed.), *Plant Microbes Symbiosis: Applied Facets* (pp. 25–45). Springer.
4. Jayaraman, J., Rajarajan, R., & Kumar, P. (2021). Impact of bioagents and soil amendments on suppression of soil borne plant pathogens. *Indian Journal of Plant Protection*, 49(3), 123–129.
5. Gupta, S., & Sharma, D. (2022). Role of mycorrhizae in plant health: A review. *International Journal of Botany Studies*, 7(1), 34–40.
6. Arora Pandit, R., Kumar, A., & Sharma, A. (2022). Biological control agents and their role in sustainable agriculture. *Journal of Pharmacognosy and Phytochemistry*, 11(4), 1506–1511.
7. Arora Pandit, M., Kumar, J., Gulati, S., Bhandari, N., Mehta, P., Katyal, R., Dogra Rawat, C., Mishra, V., & Kaur, J. (2022). Major biological control strategies for plant pathogens. National Center for Biotechnology Information. <https://www.ncbi.nlm.nih.gov/>
8. Singh, H., Jaiswal, V., Singh, S., Tiwari, S. P., Singh, B., & Katiyar, D. (2017). Antagonistic compounds producing plant growth promoting rhizobacteria: A tool for management of plant disease. CORE. <https://core.ac.uk/download/pdf/144820797.pdf>
9. Khan, N., Maymon, M., & Hirsch, A. M. (2017). Combating *Fusarium* infection using *Bacillus*-based antimicrobials. National Center for Biotechnology Information. <https://www.ncbi.nlm.nih.gov/>
10. DeGenring, L. M. (2019). Effect of cultivar and substrate on the efficacy of biopesticides to suppress *Pythium* on greenhouse crops [Master's thesis, University of Guelph]. CORE. <https://core.ac.uk/download/250624799.pdf>
11. Francis, F., Jacquemyn, H., Delvigne, F., & Lievens, B. (2020). From diverse origins to specific targets: Role of microorganisms in indirect pest biological control. National Center for Biotechnology Information. <https://www.ncbi.nlm.nih.gov/>

Cite this Article-

"Rajesh Tiwari", "Role of Beneficial Microorganisms in the Biological Control of Soil-Borne Plant Pathogens: A Sustainable Approach in Agriculture", Procedure International Journal of Science and Technology (PIJST), ISSN: 2584-2617 (Online), Volume:1, Issue:6, June 2025.

Journal URL- <https://www.pijst.com/>

DOI- <https://doi.org/10.62796/lijst.2025v2i6004>

Published Date- 04/06/2025