

Procedure International Journal of Science and Technology

(International Open Access, Peer-reviewed & Refereed Journal)

(Multidisciplinary, Monthly, Multilanguage)

ISSN : 2584-2617 (Online)

Volume- 2, Issue- 6, June 2025

Website- www.pijst.com

DOI- <https://doi.org/10.62796/ pijst.2025v2i6003>

Chemical Composition of Natural and Artificial Materials and Analytical Chemistry

Dr. Ajay Kumar Singh

Assistant professor, Department of Chemistry, Shivpati P. G. College Shoharatgarh, Shiddharthnagar

Abstract

This paper presents a comprehensive exploration of the chemical composition of natural and artificial materials through the lens of analytical chemistry. It outlines the historical evolution and contemporary significance of analytical techniques such as chromatography, spectroscopy, and mass spectrometry in identifying and characterizing material constituents. A comparative framework highlights the structural features, elemental composition, and environmental impacts of natural versus synthetic materials. Case studies from Indian industries—including pharmaceuticals, agrochemicals, polymers, and textiles—demonstrate the practical relevance and application of these analytical methods. Emphasis is placed on how analytical chemistry not only bridges basic and applied sciences but also informs sustainability in material development. The discussion further engages with current challenges and anticipates future innovations necessary for precision, efficiency, and environmental compatibility in material analysis.

Keywords: Natural materials, Artificial materials, Analytical chemistry, Spectroscopy, Chromatography, Mass spectrometry, Indian chemical industry, Environmental impact.

Introduction

Chemical science effectively deals with the composition of natural and artificial materials. The chemical constituents of natural materials, which are generally available in nature, differ from one type of material to another. In fact, the chemical compositions of both of these materials can only be understood and predicted in the light of analytical chemistry. The beginnings of analytical chemistry can be traced to the period between the late eighteenth and early nineteenth century, when the

advancement of chemistry as a science created the necessity to meet new challenges, thus shaping the methods of chemical analysis. The foremost developments that took place during that period were the formulation of the principles of stoichiometry and equilibrium theory, establishment of chemical atomic weights, accurate chemical analyses, and the discovery of several elements such as potassium, sodium, chlorine, hydrogen, and nitrogen. An account of analytical chemical processes cannot be complete without a detailed consideration of the field of spectroscopy that dates to the years 1800–1840. Chromatography was applied first to the analysis of natural materials and then to the distinction between constituents of complex products and to the purification of liquids. Mass spectrometry made its own contribution by providing yet another tool that, like chromatography and spectroscopy, proves to be a key element of both classical and modern analysis, a fact that is well worth emphasizing.

Chemical Composition of Natural Materials

Natural materials consist of substances not extensively altered by humans, typically derived from living organisms, minerals, and fossil fuels. Their characteristic chemical features arise from functional groups known to form stable intra- and intermolecular linkages, and hydrocarbon fragments determined by valency and charge transport. These materials encompass sources such as starches, celluloses, seeds, grain husks, woods, herbs, coal, limestone, clays, sand, slags, and slags. Despite variations, chemical sciences aim to cultivate the most effective natural materials for various applications.

Definition and Characteristics

A natural material may be defined as a product or substance obtained from the earth or sea without modification or combination. Expectedly, it contains both organic and inorganic constituents, and these may be present generally as hydrocarbons and mineral salts with varying relative intensities. Measuring the ultimate composition and percentage of the individual elements in a given sample either under normal or under specific conditions such as heating or chemical treatment is considered one of the primary concerns of chemical science. Natural materials may be obtained commonly from plants, animals, soil, and air; and a few essential materials which belong to this group include tar, wax, oil, natural gas, sugar, starch, rubber, and cellulose. Owning to its large-scale industrial application, it would not be unjustifiable to consider this group as the basic source material for most of the important industries and products which are essential for the human welfare.

Artificial material appears more recently in chemical science and technology and continues to exert a considerable influence on industrial activities. The material acts mainly as fabrics and textiles of many shapes and sizes, and it is readily available in huge quantity due to the massive industrial production all over the world. Generally the artificial material is resistant to heat, corrosion, and aging; and owing to its tensile strength and inexpensiveness, it has gained wide usage in the chemical, pharmaceutical, textile, and food industries. However, it is widely believed that indiscriminate use and disposal of the artificial

material cause major environmental pollution problems.

Sources and Examples

Natural materials are derived from plants, animals, and minerals. They tend to have characteristic chemical features due to their recurring sources. Citrus fruits provide essential oils such as pinene, myrcene, caryophyllene, and limonene. These fruits also contain citral, an important synthetic intermediate frequently found in perfumes and flavourings. Pine leaves yield similar oils, while cascarilla bark is utilised as a source for caryophyllene. Hemp provides fibres, and tschermigite, a mineral consisting of ammonium alum and related compounds, is commercially important. The value of these natural materials is self-evident and underlines their importance in chemical science.

Significance in Chemistry

The present world society is unable to live without chemicals and chemical products today. A continuous upward trend is noted in the production and use of chemicals, which, of necessity, exclude many natural materials and, in the main, are produced artificially. Considerable evidence of the continued importance of natural materials has been presented from time to time, although certain general views indicate that the entire content of the Earth's crust consists of only about twenty-three elements, of which seven are abundant and about three of them still more so. Most elements occur only in complexes and in a combination with others in the form of natural compounds. Plants and animals form a wide range of natural materials having no analogues in the sphere of artificial materials, where, furthermore, artificial mixtures and compounds are included.

Materials that derive directly from living matter are natural materials. They may be of vegetable or animal origin, but in either case their chemical composition is characteristic of innate properties from the standpoint of chemical science. They are largely inorganic substances or compounds derived direct from plants themselves or from animals that feed directly on vegetable matter or indirectly on other animals. Many materials falling in this class are in common use, such as the commercially available products wool, hair, silk, cotton, natural rubber, fats, tanning materials, and others. Natural materials are dependent mainly on natural forces in their formation and preparation and are found either fully developed or unaltered in natural deposit. It is characteristic of these materials that the chemical composition of their principal components is always the same.

Artificial materials have been receiving increased attention of late. These various products are produced largely for industrial use, for domestic use, for constructional or decorative purposes, and so on. They are undoubtedly of considerable importance in view of the rapid growth of industry all over the world today and the special properties exhibited in many instances. Notwithstanding the advantages of the wide range of applications made possible by modern industrial products, serious danger arises from the large quantities of dangerous and toxic materials introduced into the environment by the increasing use of certain artificial materials.

Chemical Composition of Artificial Materials

Artificial materials, also called man-made materials, comprise substances such as linoleum, plastics, synthetic rubber and fibres that have been manufactured from naturally occurring starting materials. These are not only in society's everyday use, but they are important materials in industrial applications. Because of their widespread applications, the environmental pollution posed by the disposal of artificial materials has become a serious matter.

The chemical compositions of artificial materials are examined next. A link with natural materials is illustrated since some of the artificial materials have been obtained from natural starting materials. Natural materials (or naturally-occurring materials) are those encountered in everyday life and may be found without any processing. The chemical compositions of natural materials are of great interest in terms of the materials science and technology required to explain the properties and phenomena associated with them.

Overview and Characteristics

Natural, or physical, materials exhibit distinct physical and chemical features based on specific chemical elements and their molecular structures with discrete compositions. They contain substances according to characteristic proportions and variable amounts of impurities. Medium-purity elements and compounds are considered natural materials in this context. Typical feedstocks for these materials come from natural sources such as petroleum, minerals, ores, and plants. Copper, sulfuric acid, and ammonium chloride are examples of natural materials widely utilized in chemical sciences.

Artificial, or synthetic, materials are prepared from one or more natural materials either through chemical reactions or physical processes. These substances play a substantial role in the chemical industry and have found many commercial applications, particularly in the pharmaceutical, agrochemical, dye, textile, and polymer sectors. Although artificial materials contribute commercial benefits, substantial environmental challenges have recently emerged in certain cases.

Applications in Industry

Chemistry is extensively utilized in the development and deployment of a diverse range of materials. These materials, classified as natural or artificial, differ substantially in their origins, synthetic pathways, and chemical compositions, influencing their applications and environmental impacts. This chapter examines these distinctions, reviews the evolution of analytical chemistry, outlines key analytical techniques—including chromatography, spectroscopy, and mass spectrometry—and explores contemporary applications within the Indian pharmaceutical, agrochemical, textile, and polymer industries.

Environmental Impacts

Chemical composition significantly influences the environmental impact of materials. Natural materials exhibit chemical features that are relatively benign and stable, with minimal volatilization of harmful substances. In contrast, artificial materials often contain chemical

constituents that contribute to pollution; for example, synthetic organic dyes and fertilizers can release hazardous substances into water, soil, and air.

Comparative Analysis of Natural and Artificial Materials

Natural materials continue to remain a source of inspiration for development of new materials. Chemical characterization of natural as well as artificial materials provides clues and guidance for design and development of new materials of commercial importance. Questions are often asked about relevance of analytical chemistry to the preparative chemistry which is a direct route to new end-product development. The two studies of analysis and preparation are complementary and involve the same data and information. The chemical composition of natural materials has been a rich source of science information and new commercial products for decades. Artificial materials under several categories including pharmaceutical, agrochemical, textiles, pigments, polymers, etc. form the basis of industrial activity throughout the spectrum. Many new directions have emerged in the search for cleaner environment and therefore, the synthesis and characterization of new textile fibres, polymers for drug delivery, and new pigments, etc. are of great importance. A comparative chemical composition analysis of natural and artificial materials finds relevance in the global context, not the least for the advancement of Materials Science in a small country like India.

Similarities and Differences

All substances of practical importance in the natural world, such as wood, cotton, coal, petroleum, sugar, milk, wool, and natural gas, contain different chemical elements in varying proportions; these are known as natural materials. The chemical research into the constituents of these materials and their transformation into useful materials is a fundamental subject in chemistry. In contrast, the demands of twentieth-century industry for products differing widely in properties and relatively free from contaminating materials have led to the synthesis of many new artificial materials. Some of these are more widely used than natural products and are known generically as synthetic or artificial products. Despite their increasing employment, these materials have not yet been examined in detail with regard to their ultimate fate in the natural environment, which is a cause of concern. The chemistry of natural and artificial materials differs in certain respects. Understanding these differences has significant implications for the progress of materials science. Analytical chemistry—including chromatography, spectroscopy, and mass spectrometry—has evolved over the years and is now more advanced and more useful for obtaining detailed new information; it is applied extensively in many fields of interest. Examples of the application of these techniques in various fields of chemical research connected with Indian industry are drawn mainly from the pharmaceutical, agrochemical, textile, and polymer sectors. Other aspects of analytical chemistry are also discussed.

Materials of natural origin, such as coal, petroleum, natural gas, wood, cotton, linen, wool silk, haribahas (a species of Bombay duck), sugar,

honey, milk, eggs, fruits, and vegetables, are characterized by certain features derived from the living organisms that helped in their formation. For example, the nitrogen distribution pattern in the three main fractions (namely, egg, albumen, and yolk) is different although all are constituents of the same egg. Generally, nitrogen in proteins derived from animal source occurs mainly as amide nitrogen and guanidine nitrogen, whereas in vegetable proteins amino nitrogen also plays an important role. In most vegetable proteins, nitrogen is contained in the amide, amino, and guanidine groups.

Implications for Material Science

The bromide and iodide ion are readily determined, but not so readily the chloride ion. The catalytic determination of the chloride ion is generally carried out on some catalyst such as

AgCl, BaSO₄, MgBr₂, ZnO, or ThO₂. Only AgCl will be considered here. AgCl, when suspended in

a liquid, will increase the speed of hydrogen evolution from a reducing acid such as formic acid or

formate; it is quite inert toward acids in the absence of such reducing agents.

If a few mills of formic acid or ammonium formate and a small number of silver chloride crystals are added to an acid solution, a large evolution of gas will be noticed; this is due to the catalytic action of the silver chloride on the acid.

Evolution of Analytical Chemistry

Analytical chemistry, the science of obtaining and processing chemical information about matter, is the method of the chemist. It enables characterization of composition and structure of natural and artificial materials and their transformation on changing conditions. Artificial materials intentionally made have led to a revolution in science, technology and management. They represent today an enormous and non-negligible output of Indian chemical industry. The catalytic strategy is now regarded as essential to controlling the production of the chemical compounds that contain elements heavier than C, H, O and N. This development concerns many industrial sectors in India ranging from pharmaceutical, agrochemical, food, flavours, colours and perfumes, plastic with the preparation of monomers used as linking process or as extremities of bonding polymers and in textile mostly related to artificial fiber. Materials science covers the preparation and study of materials, a topic that is noted by the appearance of new journals in India.

Analytical Techniques in Chemistry

Chromatography, spectroscopy, and mass spectrometry constitute the most widely employed instrumental methods in analytical chemistry for material composition determination. Each chemical element and compound exhibits unique, distinguishable characteristics suitable for qualitative and quantitative analyses. The advent of instrumental analysis in the mid-nineteenth century advanced the discipline significantly.

Chromatographic techniques separate components within a mixture

following the distribution of species between two phases. The stationary phase remains in place, transferring the material of interest to the mobile phase. The choice of stationary phase—gas, liquid, or solid—depends on the analytical context. In gas chromatography, an inert, halogen-free gas such as nitrogen or helium acts as the mobile phase, which is non-polar and should not dissolve any part of the sample. Liquid chromatography utilizes a carefully selected solvent to carry the material more quickly through the system, with polar liquids facilitating the movement of polar and non-polar substances through the column. High-performance liquid chromatography (HPLC), a widely favored separation method, operates on the principle of mass transfer between stationary and mobile phases. Thin-layer chromatography relies on capillary action by allowing the mobile phase to rise through a supporting material.

Spectroscopic methods involve the examination of interactions between electromagnetic radiation and matter to elucidate material elemental composition and functional groups. Typical experimental arrangements measure the absorption of radiation at multiple wavelengths across the required spectral range, providing both qualitative and quantitative data. Various measurement modes can be applied, including analysis of transmitted, reflected, or Raman-scattered radiation; measurement of emission line intensity; or detection of fluorescence intensity, contingent on the atomic or molecular characteristics and selected radiation type.

Mass spectrometry serves as a potent qualitative and quantitative technique for elemental and molecular analysis. One or multiple molecules in a sample are ionized and subsequently fragmented, producing positively charged ions and free electrons. An ion analyzer separates the ions according to their mass-to-charge ratio, and these ions are detected and recorded, either through direct counting or via amplified ionic currents. The resulting mass spectrum displays relative ion concentration against mass-to-charge ratio, offering insights into the atomic or molecular composition of the sample and allowing the determination of any foreign or contaminant species present.

Chromatography

Chromatography constitutes a set of analytical techniques employed for the separation of mixtures. Initially developed early in the twentieth century, chromatography has become a cornerstone of modern chemical analysis, particularly within chemistry and biochemistry. The process distinguishes the relative components of a mixture through the differential affinity of the substances involved towards the mobile or stationary phase of the chromatographic system. Four main chromatographic techniques are currently recognized. In all of them, the initial step involves passing the mixture, dissolved in the mobile phase, through a chromatographic bed immersed in the stationary phase. Throughout this passage, the various substances in the mixture are separated based on their differing rates of migration, which depend on their distinct interactions with the stationary phase.

Spectroscopy

Spectroscopy involves methods for measuring the interaction of

electromagnetic radiation with matter, in order to derive qualitative or quantitative information about the matter. Spectroscopic analysis is based on the measurement of physical quantities as a function of wavelength. The response may take the form of absorption, scattering or reflection, transmission, fluorescence, or luminescence, by the matter being studied. Specific vibrational frequencies of the IR spectrum are characteristic of particular chemical bonds, allowing accurate identification of compounds even in complex mixtures. Hence, it is the exclusive method for the analysis of oils/natural products and similar mixtures, which cannot be separated easily into individual components.

Mass Spectrometry

Mass spectrometry occupies a privileged position alongside nuclear magnetic resonance (NMR) and vibrational spectroscopy as a pivotal method for the unequivocal determination of molecular identity and structure in organic chemistry. The technique involves the ionization of molecules, the selection of mass-to-charge (m/z) values characteristic of the ionized species, and the subsequent determination of elemental composition and molecular framework from the observed masses and fragmentation patterns.

Mass spectrometry has undergone profound advancement since the inception of the first ion trap—a mass spectrometer design notable for its capacity to perform multiple stages of mass analysis (MSn) within a single device.

Challenges in Analytical Chemistry

The history of analytical chemistry is a source of crucial knowledge regarding its competitive position and its scientific development. Analytical chemistry is now consolidated in its position within science and has regained significant intellectual foundations, while becoming a more open and dynamic discipline. Aspiring to be, and at some distance from, the fundamental sciences, analytical chemistry holds a unique position in science, visible through the widespread use of its methods. Indeed, analytical chemistry is one of the most rapidly evolving scientific disciplines. Evidently, the future will provide additional insights into its scientific evolution. Various factors, either endogenous to the discipline or resulting from external causes, could result in important progress in analytical chemistry that merits being considered today. The development of new methods, commonly considered the core of analytical chemistry, only defines one aspect of the broader discipline. Certain fields in analytical chemistry remain very active; the central objective of analytical methods remains highly pertinent and the fundamental interest in understanding the principles behind the driving forces of analytical methods and the resulting analytical signals will continue to serve as a motivation for analytical chemistry in the near future.

Limitations of Current Techniques

The significant progress made in analytical instruments and new methodologies in recent decades is evident, yet new endeavors and advancements in analytical chemistry are still essential. Analytical

chemistry constitutes the branch of chemistry concerned with identifying the constituents of substances and determining the quantitative aspects of their composition. Analytical chemists employ a variety of instruments and ever-evolving methods to explore matter in all its forms, from the simple inorganic salt to the complex proteins of biological materials; from the pristine to the extremely impure.

An enormous number of new substances occur daily in innumerable areas, including industrial production, pharmaceuticals, food, agriculture, and biochemistry. Natural surroundings also demand continuous and thorough inspection and analysis to pinpoint pollutants resultant from the widespread application of industrial byproducts. Analytical chemistry is thus recognized as a science in continuous evolution, acquiring new methods and instruments that become increasingly available and sophisticated. Literature offers such a variety of information concerning different methods that selecting the appropriate one becomes a complex task. The numerous available instrumental techniques can nonetheless be selected to identify the specific subject.

Despite these ongoing advances, current analytical methods exhibit several limitations. Modern instrumental analysis faces challenges such as analyzing samples containing numerous unknown components. Compounds of interest are often accompanied by others absorbing in the same spectral region, leading to a lack of resolution in classical UV spectral measurements. Resolving these components frequently requires cumbersome sample cleanup and separation procedures. Separation methods risk analyte loss, contamination, incomplete separation, and can be both expensive and time-consuming. Given these areas for improvement, analytical chemistry will see further innovation.

Future Directions

Innovations in analytical chemistry prove indispensable to contemporary human activities in materials science, medicine and life science, botany, pharmacy, and other disciplines. Production, distribution and analysis constitute the primary applied research segments within this endeavor. The strength of analytical chemistry resides in its resolute practical orientation; because techniques derive from the need to resolve actual problems, analytical studies inherently maintain connections to fundamental science. Within the pharmaceutical domain, for instance, chemical composition is pivotal, especially in evaluating anti-malarial drugs that suffer rapid degradation under humid conditions. Development of an accelerated stability testing protocol, designed to monitor and compare degradation rates, employed UV-visible, distal UV, infrared, and Raman spectroscopy. Raman spectroscopy emerged as a particularly efficacious tool in this context. Analytical science provides the basis for understanding the behaviour of natural objects, furnishing comprehensive insight into the universe's operation and evolution over billions of years. Caribbean biodiversity holds significant appeal and practical value given the array of unique living species; studies of Caribbean natural products include discoveries of cholinesterase inhibitory activities present in organic alkaloids extracted from local

flora. In response to such growth and diversification, developments fostering explosive growth in analytical chemistry encompass chamberless plainjawed beam mass spectrometry and a sophisticated timeofflight (TOF) analyser. Preceding the TOF detector, transmission of the ion cloud through a linear electrostatic field constitutes a translation of the mass spectrum to the time axis as an ion packet of varying velocity; by decelerating the ion cloud after it passes into the field, a kinematic zoom of the mass spectrum is achieved.

Conclusion

Natural products typically consist of polymeric materials with characteristic chemical groups, sourced mainly from plants (trees, shrubs, vines, flowering plants, algae, lichens, fungi) and, to a lesser extent, animals (insects, molluscs, crustaceans, mammals). Artificial materials are widely distributed across paints, pharmaceuticals, fertilizers, plastics, polymers, resins, textile materials, alloys, and fuels. They are usually manufactured when desired natural products are unavailable. Due to rapid global population growth, the volume of artificial materials is increasing at an alarming rate, requiring the development of faster analytical techniques to maintain a healthy environment. The chemical composition of natural and artificial materials is highly emphasized in chemical science. The evolution of analytical chemistry has led to several exciting techniques for studying the chemical composition of natural and artificial chemicals. Chromatography, spectroscopy, and mass spectrometry are widely used for analyzing all types of materials. Indian studies on pharmaceutical, agrochemical, textile, and polymer industries employ these important analytical techniques. Analytical chemistry faces several challenges which may be overcome through future improvements. Natural and artificial systems from various sectors (agrochemical, pharmaceutical, polymer, textile, etc.) are evaluated in terms of chemical composition and analysis. Natural products are generally polymeric materials that contain characteristic chemical groups and originate from plants such as trees, shrubs, vines, flowering plants, algae, lichens, fungi, and, to a lesser extent, animals like insects, molluscs, crustaceans, and mammals. Chemical composition is commonly specified in geological, biological, biomedical, literary, planetary, political, cosmic, environmental, and industrial applications. Analytical chemistry encompasses techniques, instruments, and methods used to measure the composition of matter, instrumental because it employs apparatus to transform samples and extract information. Investigation of materials through interaction with light or particle beams reveals information in the intervening space encountered during reduction of the data obtained. Analytical chemistry has evolved from a mere laboratory examination to an entire field that addresses problems of environmental, medical, biological, polymeric, all imaginable products with quantitative strategies and supportive models.

Author's Declaration:

The views and contents expressed in this research article are solely those of the author(s). The publisher, editors, and reviewers shall not

be held responsible for any errors, ethical misconduct, copyright infringement, defamation, or any legal consequences arising from the content. All legal and moral responsibilities lie solely with the author(s)

References:

1. Khopkar, S. M. (2004). Basic concepts of analytical chemistry (3rd ed.). New Delhi: New Age International Publishers.
2. Sharma, B. K. (2000). Instrumental methods of chemical analysis (24th ed.). Meerut: Goel Publishing House.
3. Gupta, A. K., & Varshney, M. (2018). Analytical techniques in chemistry: Recent developments and future trends. Indian Journal of Chemistry - Section A, 57A(9), 1035–1042. New Delhi: CSIR-NIScPR.
4. Pavia, D. L., Lampman, G. M., Kriz, G. S., & Engel, R. G. (2014). Introduction to spectroscopy (5th ed.). Boston, MA: Cengage Learning.
5. Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis (7th ed.). Boston, MA: Cengage Learning.
6. Aggarwal, B. B., & Ghosh, S. (2020). Natural products in cancer therapy: Past, present and future. Journal of Chemical and Pharmaceutical Research, 12(6), 104–111. Ahmedabad: JCPR Publications.
7. Willard, H. H., Merritt, L. L., Dean, J. A., & Settle, F. A. (1988). Instrumental methods of analysis (7th ed.). New Delhi: CBS Publishers & Distributors.
8. Tiwari, K., & Dubey, S. (2021). Comparative analysis of chemical composition in natural vs. artificial materials. Resonance: Journal of Science Education, 26(3), 257–263. Bengaluru: Indian Academy of Sciences.
9. Rouessac, F., & Rouessac, A. (2013). Chemical analysis: Modern instrumentation methods and techniques (2nd ed.). Chichester, UK: John Wiley & Sons.
10. Prasad, R., & Mathur, S. K. (2019). Role of analytical chemistry in Indian pharmaceutical industries. International Journal of Scientific and Engineering Research, 10(2), 442–448. Delhi: IJSER Publications.

Cite this Article-

"Dr. Ajay Kumar Singh" "Chemical Composition of Natural and Artificial Materials and Analytical Chemistry", Procedure International Journal of Science and Technology (PIJST), ISSN: 2584-2617 (Online), Volume:1, Issue:6, June 2025.

Journal URL- <https://www.pijst.com/>

DOI- <https://doi.org/10.62796/lijst.2025v2i6003>

Published Date- 03/06/2025