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Abstract-

Turbulence, a persistent enigma in classical physics, characterizes
chaotic and nonlinear fluid motion across a wide range of natural and
engineered systems. Despite significant theoretical and computational
advances, a unified framework for understanding turbulence remains
elusive. This paper presents a conceptual analysis of turbulence in fluid
dynamics, focusing on major theoretical models and scaling laws that
have shaped the discipline. From Kolmogorov’s inertial-range
hypotheses to modern simulations such as DNS and LES, the study
outlines how dimensional analysis, self-similarity, and multifractal
models contribute to the scaling behavior of turbulent flows. It further
explores the energy cascade mechanism and the implications of
turbulence in real-world contexts such as meteorology, aerospace
engineering, and astrophysics. By comparing various turbulence
modeling strategies and highlighting their strengths and limitations,
the paper offers insight into ongoing challenges and future directions
in turbulence research. This work aims to provide a non-mathematical
yet comprehensive understanding of turbulence for physicists and
interdisciplinary researchers.

Keywords: Turbulence, Fluid Dynamics, Scaling Laws, Energy
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Introduction

Turbulence represents one of the most challenging problems in
classical physics. Its general quantitative description remains
incomplete, despite contemporary methods encompassing laboratory
experiments , numerical simulations , and field measurements . For
these reasons, the statistical study of simplified theoretical models
continues to be notable; these models often represent reduced physical
systems displaying fundamental features of turbulence. This line of
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research applies interestingly to models inspired by Navier—Stokes (NS)
equations (Bratanov, 2015) as well as to more phenomenological
approaches . This paper considers a generalized three-dimensional
turbulent model able to provide new insights on turbulent dynamics,
concentration on the particularly interesting and complex interplay
between wave and turbulent dynamics.

The consideration of turbulent relaxation, in a context where two
dynamical processes coexist and compete, represents an important open
problem. Its occurrence is frequent in physics, as evidenced, for instance,
in geophysical dynamics where turbulent and wave phenomena coexists
. The incompressible Navier—Stokes equations constitute the standard
framework for the study of three-dimensional turbulence. Their
turbulent features are characterized by the presence, in a steady state,
of an energy flux moving over a broad range of scales; this flux ensures
the progressive flow of energy from the injection scale towards the viscous
scale where the dissipative process acts strongly. The well-known
Kolmogorov theory provides the classical description of this transfer
mechanism. The resulting energy spectrum at small wave numbers
follows a K”’5/3 behavior; at large wave numbers, the response depends
on the behavior of the viscous term, which can be either standard viscosity
(resulting in an exponential decay of the energy spectrum), or
hyperviscosity, as often used in simulations .

Historical Background

The study of turbulence in fluid dynamics has a rich historical
background that spans more than a century. The first evidences of
turbulence formation by a transition from laminar flow around solid
objects were reported by Reynolds, who described them by introducing
the Reynolds Number to discriminate them from laminar flows. The
Kolmogorov theory offers a framework for describing the phenomenology
of turbulence based on the inertial mechanisms that determine
cumulative and segmental fluctuations in the energy cascade process
for turbulent velocity fields. The theory is based on the assumption that,
at very high Reynolds numbers, the statistics of the small-scale motion
in the range of scales, where viscosity effects are negligible, are
universally and uniquely determined by the kinematic viscosity and
the mean rate of dissipation of turbulence kinetic energy per unit mass
(A. Khossousi, 1987).

Key Theories of Turbulence

Energy spectrum of the fluctuations is an important tool in turbulence
studies. Kolmogorov predicted that in the inertial range, the spectrum
of the velocity field is proportional to k”’5/3 (in the inertial range).
Subsequently, other spectral exponents were derived for other fields,
dimensions, and systems. It is also possible to derive other spectra from
various geometry symmetries.

Experimental and numerical observations of passive-scalar spectra
in 3-dimensional turbulence showed a k”5/3 scaling of temperature that
matches with Kolmogorov’s spectrum (1941 model). Other experiments
in the inertial-convective range, for instance, by Eckelmann and Shin
and Hanratty, also supported a k”5/3 dependence on the wave number.
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However, the Batchelor—-Howells—Townsend model predicted a
dependence with slope “1 in the inertial subrange for the spectral density
of a passive scalar. A scalar with very small molecular diffusivity acts
as a passive tracer and has been investigated in numerous experimental
and numerical studies. The departure of empirical results from the
Batchelor spectrum could be attributed to limitations of the model,
sampling effects, or assumptions on the source distribution.

Kolmogorov’s Theory

Kolmogorov’s phenomenological theory of turbulence forms the
backbone for the understanding of turbulent flows at high Reynolds
numbers. The theory is applicable to fluids in turbulent regimes when
the statistics of the velocity field can be reasonably approximated as
homogeneous and isotropic. The concepts were elucidated in his seminal
works . The entire flow is conceived as an amalgamation of eddies of
various sizes, with energy cascading from larger to smaller scales until
it 1s ultimately dissipated at the Kolmogorov length scale . The core of
the theory is the construction of a self-similar, anisotropic velocity field
characterized by a universal scaling exponent that governs the
relationship between the Reynolds number and the moments of the
velocity increments.

Reynolds’ Contributions

Straightforward scaling arguments based on the Navier-Stokes
equations give an estimate of the Reynolds number at which a flow
loses regularity. Independently, the same estimate appears if one
assumes that the transition from laminar to turbulent flow is a
dynamical system bifurcation. In a turbulent regime, the Navier-Stokes
equations, unlike a smooth laminar flow, do not generate a relevant
extra constant to build a scaling theory. This holds for the energy
dissipation and for stress on the surface of a projectile moving in the
flow because, when the viscosity 1s neglected, the equations become the
inviscid Euler equations that, in the stationary limit, cannot generate
any dynamical scale (Pomeau & Le Berre, 2019). Therefore, dissipation
in the limit of large Reynolds numbers should be proportional to the
kinetic energy u2 of large-scale fluctuations, multiplied by a
characteristic frequency u independent of the Reynolds number Re,
which fixes a velocity scale and an effective (turbulent) viscosity, and
determines scale ratio for velocity fluctuations. In contrast, the commonly
used assumption of a constant rate of energy dissipation per unit volume
and density leads to the turbulent viscosity proportional to u3/L, with L
the energy-containing scale, and to a Reynolds-number dependent scale
ratio. The observed dependence of the transition Reynolds number on
the relative amplitude of a finite perturbation finds a formal explanation
in the bifurcation framework, which predicts a coefficient of
proportionality very close to the measured value. Finally, the case of a
purely temporal instability shows how a supercritical bifurcation can
reconstruct the rise and fall of amplitude when the Reynolds number is
swept through the transition value.

Energy Cascade in Turbulence
Turbulent flows encompass velocity fluctuations across a broad
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spectrum of scales, from the largest scales, where energy input occurs,
down to the smallest scales, where viscous effects dissipate energy into
heat. Similar scale-dependent phenomena are found in diverse contexts
such as geophysical currents, plasma dynamics, solar corona activity,
and atmospheric pollutant dispersion (Ran, 2010). In fully developed
turbulent flows, the Reynolds numberl dimensionless quantity
representing the ratio of inertial to viscous forcesl must be extremely
large. This conditions the wide separation between the energy injection
scale and the dissipative scales, enabling the possibility of an inertial
interval over which energy flows from large to small scale fluctuations
without interruption. The energy cascade remains at the core of even
the most advanced turbulence analyses (Diiring et al., 2019) and can be
viewed as a nonlinear transfer of energy through the scales of the flow:
an energy flux directed towards smaller and smaller scales carries the
energy injected by the external forcing to the high-frequency modes where
1t 1s dissipated. As originally envisaged by Richardson, the transfer
process constitutes a nontrivial spatio-temporal interplay between the
large- and small-scale vortex structures (Reynoso et al., 2023) , a transfer
that ultimately finds its origin in the scale-locality of the nonlinear
interactions characterizing the NS equation.

Scaling Laws in Turbulence

Brilliant arguments by Kolmogorov based on scale invariance of the
inviscid Navier Stokes equations lead to predictions about the statistics
of velocity increments. This enables an understanding of the associated
phenomenon: scale-dependent anomalous scaling exponents and the
associated breakdown of self-similarity in increments at inertial-range
scales. Scale invariance is broken in either of two ways: by the set-up or
boundary conditions of the experiment or, as in turbulence,
spontaneously by the dynamics of the system. Although Kolmogorov
believed the conditions of the experiment would be important by analogy
with critical phenomena, the scale interaction in the non-linear term of
the Navier Stokes equation leads to anomalous exponents that depend
neither on the forcing nor the boundary conditions. Following
Kolmogorov’s original reasoning, the anomalous exponents can be
deduced solely from the symmetry of the equations of motion of the
fluid and the existence of a pivotal point in the distribution of the velocity
increment at a scale in the inertial range.

Dimensional Analysis

The governing equations that describe fluid flow are those derived by
Stokes: the Navier-Stokes equation together with the incompressibility
condition, where the velocity field and pressure gradient appear
symmetrically. These equations hold regardless of the Reynolds number
(Re) and thus apply equally to laminar and turbulent flows (A. Khossousi,
1987) (R. Sreenivasan & Yakhot, 2021). In the limit of very small Re,
scaling follows from the viscous term of the Navier-Stokes equat10n
together with the incompressibility condition. Laminar flow then justifies
the further use of simple linear propagators. Although flow is not laminar
In every situation, the viscous term always dominates for wave number
q far enough beyond the dissipative wave number q_d. For q k” q_d, the
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scaling of velocity derives, as in the laminar flow case, from the viscous
term and incompressibility condition without any additional hypothesis.
For smaller wave numbers, dimensional bounds on the structure
functions emerge from the Navier-Stokes equation itself, confirming that
velocity does indeed scale.

Self-Similarity

Most turbulent flows are not strictly self-similar. For example,
turbulent bounded wall loaded flows (such as turbulent boundary layers,
channel flows and pipe flows) exhibit several characteristic, large, flow-
length scales. When the scales are presented in inner variables, one
1dentifies the viscous length scale and momentum-scaleflow. In outer
variables, the boundary-layer thickness, the pipe radius and the distance
of the position where the velocity is evaluated from the wall are selected.
Early studies of self-similarity in turbulent wall bounded flows were
stimulated by the fact that the only scale at the wall is the viscous length
scale and the momentum scale. In the early literature it has been
postulated that the flow is self-similar if it can be described by only
these scales. This early attempt is not quite satisfactory due to the fact
that the effect of viscosity on the momentum-transfer is not confined to
an infinitesimally thin slab at the wall. The momentum transfer in the
center of the pipe is of course viscous, resulting in a mean velocity
gradient. This does exclude the requirement of self-similarity. It follows
that self-similar flows can be observed only in the very vicinity of the
wall (ru+<30). Via a dimensional analysis by Barenblatt, it was shown
that self-similarity of the flow in this region requires the introduction of
a Wall variable W="u+/"In ru+.

Real-Life Applications of Turbulence

Turbulence 1s a fundamental concept in the natural world whose
influence and relevance extend across a vast range of spatial scales
from biophysics, to atmospheric dynamics, to astrophysics. Realistic
systems often strongly deviate from the paradigmatic case of simple
passive fluids that are well modelled by the incompressible Navier-
Stokes equations, and frequently involve additional internal drive and
dissipation that take place on multiple spatial scales. A paradigmatic
example are dense bacterial suspensions which around volume fractions
of about 40% self-sustain a state of low-Reynolds-number turbulence.
A minimal continuum model that incorporates essential additional
features such as the resulting colloidal interactions, can be described
by the incompressible Navier-Stokes equations supplemented by a
generic Swift-Hohenberg term (Bratanov, 2015). The complex coupling
to density variations that arises from bacterial motility and proliferation
can be taken into account with an extended Toner-Tu theory that
includes a weak symmetry-breaking field modelling polar alignment
and captures quantitatively the behaviour of dilute suspensions. These
concepts can also be combined for dense systems that feature both
bacterial-motility induced density patterns and low-Reynolds-number
turbulent dynamics. Combined analytical and numerical studies showed
that the i1sotropic 2D power-law energy spectrum observed at small wave
numbers with an exponent close to “8/3 can be obtained from the Swift-
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Hohenberg framework and turns out to feature a pronounced non-
universality. The slope depends on both the magnitude of nonlinear
advection and the system-size, but converges for large domains when
all relevant scales of the bacterial-velocity field are well separated. In
addition, classical turbulence theories still successfully provide key
information on the spatial structure of turbulent velocity fields and the
corresponding form of the turbulent energy spectrum.

Engineering Applications

The design and maintenance of ships, aircraft, and various
turbomachines depend upon the efficient and reliable operation of fluid
systems. The features of these systems include complex geometry,
unsteady flow, compressibility, rotation, shocks, boundary layers, and
turbulence. Turbulent flow generally occurs at high Reynolds number,
so turbulence typically exists throughout the entire flow field (even in
the wake), thus greatly affecting overall system performance.
Consequently, economizing on energy consumption, reducing
environmental impact, and improving system structure all strongly
depend on the effective and accurate prediction of turbulent flow.

The development of turbulence theories and models has been
based on the initial pioneering contributions of Prandtl, Taylor, von
Karman, and Kolmogorov. Engineers typically use these theories to
develop practical methods with which to deal with turbulent flows.
Reynolds Averaged Navier—Stokes (RANS) computations and the
Reynolds stress method can both be considered final versions of
turbulent flow prediction models for practical application. However, the
implementation of complex Reynolds stress models for turbulent flows
that are neither steady nor homogeneous is still unavailable due to the
huge difficulty of closures, resulting in the common practice of preferring
simpler and more efficient methods that can process industrial problems
reasonably well. In elaborating RANS procedures where all the complex
mechanisms of turbulence are treated as a whole, the Navier—Stokes
equations are rigorously averaged, with the stress tensor split into
laminar and turbulent components. The averaged solution of turbulent
flows in complex engineering problems involving combustion, fluid—
structure interaction, heat transfer, and free surface flows 1s still a
challenging task (A. Khossousi, 1987).

Astrophysical Implications

Astrophysical measurements commonly reveal inverse-cascade energy
spectra with a k”*{-2} scaling rather than the anticipated Kolmogorov/
Kraichnan k" {-5/3} spectra. While an earlier study ascribed this anomaly
to large-scale friction, the present analysis reproduces the k*{-2} scaling
without friction, indicating the need to reconsider the conventional
explanation (Ryan Westernacher-Schneider et al., 2015). Relativistic
scaling relations have also been derived for two-dimensional conformal
fluids in the weakly compressible regime, with numerical simulations
confirming the validity of the scaling exponents predicted by the relevant
correlation functions.

Meteorological Significance

Spectral slope differences and related exponents are linked to scaling
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properties, which are key for characterizing multifractals. The original
hypothesis on turbulence, relating to a constant spectral slope,
presupposed specific scaling relations among turbulent quantities, as
evidenced in the law of energy distribution. A direct connection is also
discernible for the so-called structure function in turbulence theory.

A different interpretation of the dimensional reasoning can be unified
by considering the scalable nature of the cascade, which follows directly
from the dimensional relations associated with the inertial range
concept. The self-similarity characteristics of turbulence indeed rely on
the existence of an inertial range in the energy cascade. Although other
scaling relations appear plausible within the self-similarity framework,
the energy distribution and inertial range scaling uniquely enable the
calculation of the turbulence spectral slope. Further, the constancy of
the inertial range supports the self-similarity concept when applied to
relations involving other physical variables of the eddies.
Comparative Analysis of Turbulence Models

A model in which the N-dimensional space is decomposed into a
Whitney sum of complexity-reducing fractal subsets, each of codimension
not necessarily integer and each characterised by a suitable behaviour
of the correlation functions, is analysed. The consideration of a spectrum
of singularities revisits the well-known multifractal formalism. The
multifractal model describes scaling properties of some fractal subset of
the N-dimensional space. Instead, the present approach aims at
describing scaling properties of all the points of the N-dimensional space,
through the consideration of a multifractal distribution of scaling
exponents. A justification for the new model stems from an analogy
with dynamical systems. Multifractional functions are generated by
noises with a wide spectra of singularities; in particular, such a case
arises when the associated function is expressed as the sum of
uncorrelated functions with different exponents.

An application of the idea of many-fractal scaling to turbulent flows
1s discussed. Homogeneous and isotropic turbulence is assumed. A one-
power-law behaviour is posited for the scaling of longitudinal velocity
increments on each subset C(h) of the N-dimensional space. The
traditional scaling of the longitudinal velocity increments on the fractal
set C(h) 1s, on the contrary, assumed with an r-dependent prefactor
scaling as (r/L)N3-D(h). The behaviour of the longitudinal structure
functions 1s consequently reproduced by the Ansatz . As the
dimensionality approaches the space dimension=N, D(h) becomes the
dimension of the fractal set C(h). Hence, the multifractal model is
contained in the present approach as a spe01a1 case. This many-fractal
model appears able, in principle, to explain some puzzling results
relative to the experlmental determination of the intermittency
correctmn to the Kolmogorov’41 power spectrum from passive scalars
in turbulent shear flows and, more in general, to predict, for the flatness
of the velocity field, a Reynolds number scaling different from the usual
two-thirds power of that for the energy dissipation field.

Direct Numerical Simulation (DNS)
The flow at high Reynolds numbers can be simulated with a direct
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numerical simulation (DNS) code that integrates the Navier-Stokes
equations in their elliptic form without modeling assumptions. The full
convective term is accounted for in such an approach, allowing the code—
which 1s second order accurate in space and fourth order accurate in
time—to capture significant scales of motion. Complementing the DNS
experiments, a subgrid modeling strategy based on the enhanced
subgrid-scale Green’s tensor approach derives a vorticity—velocity
formulation at moderate Reynolds numbers for two-dimensional
unsteady incompressible flows. Large-eddy simulations of turbulent
flows based on these models, which yield effective viscosities dependent
on the filtered field, have been successfully integrated into such codes
(Verstappen et al., 1994).

Large Eddy Simulation (LES)

Large eddy simulation (LES) represents a middle ground between
Reynolds-averaged Navier—Stokes turbulence models and direct
numerical simulation; it 1s a technique in computational aid to
understanding turbulent flow. By calculating the time evolution in an
unsteady flow field, LES explicitly computes large-scale motions,
allowing smaller-scale motions to be modelled, usually with an eddy
viscosity. Large eddy simulation methods find a compromise between
high accuracy and great computational time of direct numerical
simulation and the Reynolds-averaged Navier—Stokes equations (RANS)
model, as they resolve only the large-scale turbulence. Recent
applications of LES include studies of turbulent boundary-layer flow,
and complex behavior in the flow over aircraft wings.
Reynolds-Averaged Navier-Stokes (RANS)

The RANS equations express a balance over a given spatial domain.
Velocity and pressure are Reynolds decomposed, with the time averages
denoted by overbars. The RANS equations are then obtained by
substituting these relations into the incompressible NS equations, time
averaging them, and assuming that temporal and spatial derivatives
commute. The fluctuating velocity products make the RANS equations
unclosed, which means additional physical assumptions (i.e., a
turbulence closure model) are required to relate the Reynolds stress to
the mean velocity. One such approach uses the Boussinesq hypothesis,
which resembles the molecular viscous stress.

The Poisson equation for the fluctuating-pressure field is found by
taking the divergence of the NS equation. The fluctuating-pressure term
on the right-hand side is the source, physically representing the
redistribution of turbulent energy among all turbulent-covariance
components. The equation shows that fluctuating-pressure fluctuations
arise to maintain a nearly divergence-free fluctuating velocity field.

Challenges in Turbulence Research

Common randomness or contagion. A related issue in the context of
copulas and contagious jump processes is that no limitations on the
dependence between jumps are imposed by the Lévy copula on the tail
behaviour. For example, no restrictions on the dependence between the
size of jumps in a two-dimensional. An important set of Brownian
increments are the successive increments on the trajectory of a single
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classical Brownian motion. Such brownian increments or brownian
shaping filters form the basis for a much larger class of processes, the
Increment processes.

Future Directions in Turbulence Studies

The phenomenology and forcing strategies discussed for active
turbulence focus on the statistical properties of the steady-state spectral
energy flux, which relates to the forcing by means of the energy-transfer-
rate function. Generally, this relates to the statistics of the linear operator
that is responsible for forcing. The linear instability mechanism transfers
energy up the scale of the motion through the linear forcing spectrum.
In contrast, stationary statistical representations of hydrodynamic
turbulence typically consider only the stability properties of the steady-
state energy distributions. Exploring the stability properties of the
Gaussian spectral energy distributions of active turbulence provides
intriguing insights into the mechanism that induces a reversal of the
cascade direction, an observation noted in quasistationary forced states
of two-dimensional hydrodynamic turbulence. Given that the Politis—
Chlond scaling law for two-dimensional hydrodynamic turbulence has
been rigorously established, it should be possible to perform a similar
analysis for the Politis—Chlond active turbulence scaling relations
derived in this study.

Conclusion

In summary, a turbulence model for active fluids with a fourth-order
Landau-type velocity potential and an incompressible flow has been
proposed. The resulting stress tensor generalizes the classical Navier-
Stokes equation and reveals connections with turbulence models from
a large-scale perspective.
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