

# Procedure International Journal of Science and Technology

(International Open Access, Peer-reviewed & Refereed Journal)

(Multidisciplinary, Monthly, Multilanguage)

ISSN : 2584-2617 (Online)

Volume- 2, Issue- 7, July 2025

Website- [www.pijst.com](http://www.pijst.com)

DOI- 10.62796/ pijst

## A Comprehensive Study on the Role of Artificial Intelligence in Adaptive Learning Systems: Comparing Traditional Educational Approaches

**Nilisha Singh**

*Phd Scholar (Education), Glocal University, Saharanpur, U.P.*

### Abstract

Artificial Intelligence (AI) has transformed adaptive learning systems (ALS) by enabling personalized educational pathways that respond dynamically to learner behaviors, preferences, and performance. Unlike traditional teacher-driven models, which emphasize standardized content and uniform pedagogy, AI-based adaptive systems integrate intelligent tutoring, predictive analytics, and real-time feedback to optimize learning efficiency. These systems build detailed learner profiles, customize instructional content, and provide immediate, context-sensitive guidance, thereby enhancing engagement and improving outcomes. Comparative analyses indicate that adaptive approaches reduce completion time, increase motivation, and foster knowledge retention, whereas traditional models often fail to accommodate individual differences. However, challenges such as data privacy, equity of access, technological dependence, and ethical concerns complicate widespread adoption. While AI-based models provide scalability and efficiency, they may also exacerbate inequalities between resource-rich and under-resourced institutions. Balancing technological innovation with pedagogical principles remains essential to ensuring equitable and effective learning experiences. Future directions highlight the potential of machine learning, intelligent tutoring, and personalized pathways to refine adaptive learning, provided that ethical safeguards and inclusive policies are implemented. This comprehensive study concludes that adaptive learning, powered by AI, represents a promising complement—not a replacement—to traditional educational approaches.

**Keywords:** Adaptive Learning Systems, Artificial Intelligence, Intelligent Tutoring, Traditional Education, Data Privacy, Equity, Educational Technology.

### Introduction

Adaptive learning combines information technology with human officials to provide personalized learning experiences and instructional paths. The goal is to provide an instructional path uniquely suited to each learner's needs based on their personal characteristics, the tasks to be performed, and the need of the organization. The advantages and disadvantages associated with adaptive learning have attracted much research attention in recent years. The idea of adaptive learning can be traced back to

early artificial intelligence (AI) research, which aimed not only to create intelligent machines, but also to help people process and organize complicated knowledge in ways similar to a human being. In 1970, the concept of "intelligent tutoring systems" emerged to describe instructional systems capable of diagnosing a student's knowledge and designing appropriate learning sequences accordingly. An intelligent tutoring system (the AI-based model) was generally considered better than a traditional model because of its ability to analyze the student's learning curve and provide appropriate learning tips on the spot. The AI-based model tries to understand the nature of a student's knowledge from their behavior, offering personalized feedback aimed at individual learners and their associated learning contexts—to enhance the learning process.

Dynamic technological developments, new tools, processes and approaches coupled with modernization and internationalization of education are pushing educators towards adaptation and innovation. The definition of adaptive learning is the use of computers as interactive teaching and training devices that allocate educational material according to students' learning needs while considering learning capabilities and individual preferences. It uses computer-based systems designed to customise a learning process according to the individual learner's characteristics, behaviours and requirements. Due to a wide range of reasons, from prerequisite understanding to preferred learning style and even the topic of interest, different individuals learn at varying paces. As a result, it becomes extremely difficult for the instructor to adequately keep pace with every student in a classroom, while also trying to traverse the dense curriculum outlined by educational institutions. Adaptive learning comes as a saving grace and is capable of plugging many of the gaps and bottlenecks found in other traditional STEM (Science Technology Engineering Mathematics) EDUCATIONrelated sectors. It help address key issues of providing learning experiences at one's own pace and space and attempts to even the playing field, especially in situations where instructors are unable to physically be present as a result of distance or limited socio-economic resources. Witnessing such effectiveness, the education systems are increasingly leaning towards commencing greater provision of STEM education through the use of adaptive learning.

Adaptive Learning Systems (ALS) integrating Artificial Intelligence (AI) have garnered significant attention in the evolving educational technology landscape. Recent reviews highlight AI-driven capabilities such as frequent real-time simulation and evaluation, which foster comprehension while reducing repeated efforts. However, the rising automation of educational methodologies necessitates a critical examination of the potential risks and challenges accompanying these opportunities. Comparative assessments of ALS versus traditional models enrich the discourse, revealing strengths and limitations that are elaborated in subsequent sections. An ALS dynamically collects and analyzes learner data to adjust subsequent tasks, tailoring exercises to individual needs and learning modalities while controlling information presentation. Content delivery varies in pace, complexity, and engagement duration under supervision. Integrated AI provisions support learning by shaping targeted experiences and offering timely, context-sensitive assistance, thereby reducing irrelevant capabilities and learning gaps. The principal aim of ALS is to tailor materials to specific areas and pace for each learner. Nevertheless, the sustained growth in ALS adoption demands a heightened focus on balancing adaptive opportunities against associated risks.

### **Traditional Models**

Educators have traditionally delivered instruction by selecting content, strategies, and activities, often relying on a fixed pedagogic flow designed to engage the majority of a target group. This approach enables teachers to apply their preferences and pedagogic talents, monitoring individual learners to adapt the pace and sequence of

content. Content usually follows a curriculum framework that subdivides material into well-defined learning units or modules of roughly equivalent instructional duration, which are delivered in a specific order imposed by the curriculum designers. Such a structure leaves little room for accommodating individual learners' differences. Although the strategy incorporates some capacity to adapt to individuals, traditional models usually involve delivering a sequence of learning objects, with teacher decisions controlling the selection, sequence, and pacing of the content. This method remains largely one-size-fits-all, with all learners generally exposed to the same content, activities, and supporting material for the majority of a course, limiting personalization and potentially affecting engagement and effectiveness. Teacher-driven methods constitute the classical instructional approach whereby teaching plays a central role in the learning process. Within this paradigm, instruction is predominantly one-directional, encompassing the transmission of educational content from the educator to the students. Classroom delivery methodologies adhere to the traditional framework, assigning a crucial role to the teacher in orchestrating the educational experience. Teaching staff typically determine the educational content and assess learners' progress without substantial input regarding the diverse backgrounds or preferences inherent in individual students. Consequently, a uniform set of objectives characterizes the education imparted to a broad spectrum of learners. Given the heterogeneous nature of student bodies across various educational institutions, the ability of teacher-directed models to address distinctive learner requirements is consistently subject to scrutiny.

Traditionally, learners access all learning materials simultaneously, progressing through lessons at their own pace. Content and learning objectives follow a preset sequence, with pedagogical principles fixed throughout the course. Students bear the responsibility of reviewing or skipping content as needed. In contrast, research on AI-based adaptive learning emphasizes the use of performance indicators as predictive instruments guiding content selection. A dedicated Learning Object Management module manages a database of educational resources covering course topics, associating metadata with each object. A Performance Predictor module applies classification algorithms to identify suitable content items aligned with the learner's predicted needs. Consequently, material selection is determined by predictions derived from prior learner input. Adaptive learning systems also incorporate elements of personalized learning—an educational strategy focused on tailoring instruction to individual students' varying characteristics. These characteristics include motivation, preferred learning style, meta-cognitive strategies, and prior knowledge. In turn, adaptive learning systems tailor course paths and content to each student's unique profile.

### AI-Based Models

A shift from teacher-centered to student-centered systems is underway. Theoretical shortcomings have lent their weight to student-centered ones. Since each unique student has different standards, an adaptive system is a must. Accurate measures of adaptability support the instructor to choose the best instructional method for a particular student. Issues exist in the domain of education, on the other side, the instructor helps the student to cope with different situations for his/her benefit. With the advancement of intelligent tutoring systems and cognitive pre-assessment, intelligent techniques can be a great source to enhance learning. According to Adamu and Awwalu, Artificial Intelligence (AI) enables several fresh research avenues for the Adaptive e-Learning System (AES) to learn the on-demand content eLearning systems. The Intelligent Tutoring System (ITS) supports areas of e-learning where it provides teaching and learning in accordance with the needs of the learner's knowledge. Its central idea is to synthesize tutoring techniques and learner's features to produce a

bespoke, knowledge-level approach, which is flexible in learning from the individual differences of each learner's needs. The combination of ITS and an adaptive hypermedia system provides a personalized learning environment that is designed to adjust all courses to the learnability and readiness of the individual student. AI plays a crucial role in areas such as Ontology (defined as the study of the existence of meaning and knowledge) and knowledge-retrieval. These are both essential components that need to be embedded within the contents prior to production and delivery in AES. Other components of AES include: Student Model, Teaching Model, Domain Knowledge, Communication Module, and Learning Environment. The Student Model defines a profile that profiles all personal and behavioral attributes of the learner. These include personal information (i.e., name, sex, age, etc.), knowledge of content, skills, history of access, and learning goals. The instructional models suggest dynamic strategies during delivery; such as monitoring and recommending content variations during delivery. The AES system is entirely designed for content formation; thus, it reaches a wide range of learners at all levels of education within different learning environments. Adaptive learning systems create a personalized learning experience by collecting and analyzing students' behavioral data, dynamically updating student profiles, and providing individualized feedback and guidance. The reported evaluation of Yixue Squirrel AI showed that an adaptive learning system produced significant improvements over a traditional classroom and an alternative adaptive platform. Adaptive learning adjusts in real time to each student's knowledge states during learning processes until learning goals are achieved. Furthermore, meta-analyses and large-scale studies have lent empirical support on the effectiveness of adaptive learning systems to improve student learning gains.

Intelligent tutoring systems constitute the core of artificial intelligence-based adaptive learning, supplying digital teaching tailored to an individual student's needs and providing rapid, constructive feedback, support, and encouragement. They draw on a student model of interrelated concepts and skills to identify learning gaps for remedial guidance and use predictive analytics to design personalized learning paths based on student outcomes and behaviour.

Personalized pathways are the backbone of AI-based adaptive learning systems. Such systems deliver content and instruction tailored to the individual learner, rejecting the one-size-fits-all approach of traditional models. Customized learning paths improve the quality of the educational experience and increase efficiency, reducing completion time while increasing performance. To build systems offering a truly personalized learning experience, it is necessary to predict student needs accurately and guide each learner through material appropriate to their knowledge, skills, and objectives. Intelligent tutoring systems (ITS) facilitate the provision of individual support in large-scale environments, producing positive effects on engagement and learning performance. In open-ended activities, such as conversational interactions, ITS can provide personalized feedback, enhancing learning efficiency. Real-time feedback, which diagnoses the learner's current state and prescribes a remedy appropriate to their individual difficulties, is far richer than summative assessment, which signals failure only after the chance for timely intervention has passed. Advanced techniques further extend adaptation capabilities. In educational video activity data, a wide range of behavioral and contextual variables governs whether a viewer watches, pauses, replays, or skips through videos; the amount and sequence of engagement behaviors reflect different types of learning needs. An accurate predictive model enables a system to anticipate video interactions and automatically tailor the recommendation stream. Most commercial platforms supporting personalized learning sequences offer short interactive

exercises and problems, together with immediate feedback that enables students to learn at their own pace. Such systems have advanced considerably in recent years and now present a viable alternative to the conventional 'watch and test' approach of standard online platforms.

The advantages offered by the adoption of adaptive learning systems include the possibilities for real-time feedback to students and teachers. These feedback mechanisms can support the for-on-the-spot comprehension of teaching, enabling the immediate improvement of the transmission of knowledge and the adjustment of further contents and materials. In more detail, real-time feedback can accomplish two objectives: allowing students to request help and helping educators calibrate the depth and complexity of the material conveyed.

Large classroom sizes inhibit, from the students' perspective, the regular and effective solicitation of assistance, which is then perpetuated only when misunderstandings become hindrances to the learners' further progression. Real-time feedback mechanisms allow students to overcome such barriers by providing alternatives to the declaration of need in a social and public environment. Hence, the frustration characterizing cases of delayed (or non-existent) clarification can be avoided, potentially increasing the engagement with the learning activities and, consequently, potentially reducing the dropout rates. From the standpoint of the educators, the possibility of acquiring a deep and exact understanding of the class's current level of understanding can constitute a relevant aide to modulate the elaboration of the next expositions. The adaptability of the material subject to such understanding becomes possible only if a continuous stream flows from the individuals or from the groups to the instructors, ideally as their learning activities develop. Observe that, with typical mistake-laden cases, indications would arise only after the exhaustion of the activity, critical patterns of misunderstanding cannot be traced, and therefore, the remediation of the exposition involves either the repetition of the original expression or the entire stop of the learning activity until further and better comprehension is gained.

With the emergence of AI-based adaptive learning systems, a growing number of academic providers have resorted their interest to the field of predictive analytics. This branch of data analysis makes use of machine learning algorithms for the purpose of forecasting the potential outcomes of future activities, mainly based on past records and inputs.

Complementarily, academic artificial intelligence platforms utilize their predictive ability for learner assistance. Through the behavior exhibited within the environment, a suitable set of resources and activities can be suggested to improve knowledge acquisition. Moreover, such tools are capable to identify and notify frequent errors so as to accelerate the relevant correction process. In these ways, an automation of the monitoring and engagement phases establishes a learning pathway tightly fitted to the learner's profile. Fully automated personal support constitutes an improvement over traditional mentoring. Instead of devoting their attention to merely one single student, tutors may now handle a greater number of learners simultaneously. Although not comparable to the human touch, immediate intervention can be granted by AI-based systems to guarantee assistance in every moment, while the risk of general inefficiency and insufficient feedback at crowded classrooms is limited appreciably.

### **Comparative Analysis**

Traditional educational models heavily rely on standardized plans and teacher-driven content delivery, where students engage with uniform curricula and systematic testing under instructor guidance. While this uniformity simplifies resource development and

scheduling, the absence of personalization hinders efficient and effective knowledge acquisition, particularly given diverse learner backgrounds and prior experience. By contrast, AI-based systems employ intelligent technologies to construct personalized knowledge acquisition pathways. Intelligent tutoring systems, for instance, offer tailored instruction that adapts to an individual's progress, thereby facilitating learning experiences more effectively than conventional classes. Real-time feedback mechanisms promptly address errors, enhancing motivation and enabling incremental acquisition of complex concepts. Furthermore, predictive analytics—drawing on variables such as performance, socio-economic factors, and personality traits—can anticipate future learning outcomes, informing customized pathways and resource allocation aimed at improved efficiency. Comparative analyses reveal distinct advantages and drawbacks. Traditional models benefit from a commonly accepted teacher-centered philosophy, universal applicability, cost-effectiveness, and widespread accessibility. Yet, their uniform frameworks and lack of real-time error correction limit responsiveness to individual needs. AI-based systems excel in efficient knowledge transmission, tailored content delivery, and timely error mitigation. Nevertheless, challenges persist regarding limited availability in under-resourced regions and diminished instructor-student interactions, which are pivotal for motivation and engagement. These factors correspond directly to the strengths and shortcomings identified in the preceding sections 'Traditional Models' and 'AI-Based Models'.

Efficiency is a key advantage of Artificial Intelligence (AI)-based adaptive learning systems. Personalization and timely feedback increase engagement and reduce task completion time when compared with more traditional learning environments. Teacher-centric and standardized instructional approaches tend to reduce both engagement and efficiency. Although more adaptive approaches have the potential to bridge gaps in access to high-quality education, disparities in internet access between rural and urban areas and between middleclass and lowerincome households may create new challenges to equitable educational practices around the world. Evaluations of adaptive courses in the educational context of the United States show that students who participate in adaptive systems perform at higher levels than those in corresponding traditional environments. Large-scale experimental studies within American secondary schools demonstrate that an adaptive system was demonstrably more effective than a traditional classroom control group.

Adaptive learning technologies can render educational programs engaging and captivating, enhancing students' interest and motivation. They provide continuous, real-time feedback to maintain student engagement and inform instructional strategies. Learning styles—considered reasonably stable indicators of how a learner perceives, interacts with, and responds to the learning environment—moderate the effectiveness of adaptive systems, influencing both satisfaction and academic achievement when instruction aligns with preferred modalities. Teachers traditionally create classroom environments that stimulate learning through structured activities and social interaction, promoting sustained engagement. Conversely, adaptive mechanisms in educational software tailor content presentation, instructional flow, and feedback to individual needs, thereby sustaining interest and facilitating incremental advancement.

While an adaptive learning system based on artificial intelligence guarantees institutions the technology to deliver higher levels of personalized education and addresses the core issue of maintaining an efficient classroom, its adoption across a country like India is likely to magnify certain forms of inequality within an already unequal society. An institution that can afford this technology will certainly create a

better, personalized, and more-efficient learning environment for students than the traditional classroom setting in which there are thirty to fifty students for a single teacher. On the contrary, a majority of schools located in semi-urban and rural areas will continue to work under conventional pedagogical methods due to lack of infrastructure and investment in Artificial Intelligence. While India has one of the fastest Internet speeds, it also has one of the lowest penetrations of 4G across rural areas; similarly, the spread of electricity is not uniform. Hence, the expansion of adaptive learning systems in India will accelerate the growth of inequality between the haves and have-nots.

Furthermore, the transition from traditional teaching methods to an automated process also means that intrinsic values and philosophies attached to education are gradually lost. The concept of education was not restricted to limiting the number of students and improvising the standard pedagogical process; instead, education prepares an individual with much more than the ability to become profitable to society. Humans are social beings, who are born and raised under various sociocultural influences of their respective places. Gradually these influences become a cultural capital and help in the personality formation of individuals to adapt to, and live with, others who share a set of common values and understandings. While AI-based education fulfills the objective of producing an individual, who can be productive to society, it is unlikely to prepare him/her well enough with social and cultural competencies that education, in a broader sense, is supposed to provide.

Learning encompasses a wide range of student behaviors and processes from information exchange to knowledge construction and social integration. Recent systematic reviews conclude that behavioral outcomes receive little attention from firms and scholars when using ILEs. Participating in ILE-based courses can lead to varying levels of commitment depending on factors such as learning experience and capabilities. Adaptive learning systems seek to personalize learning environments through diverse instructional objects (e.g., videos, animations, simulations, case studies) by inferring student preferences to guide the learning path. However, there is limited evidence on the relationship between ILEs and learning outcomes. A study comparing adaptive and traditional learning models found that adaptive exercises positively influence learning outcomes compared to conventional student-paced exercises, although participation in adaptive exercises decreases as they progress.

### Challenges

Adaptive learning systems have witnessed rapid development since the inception of artificial intelligence (AI). AI-enhanced educational programs provide individualized pedagogy to learners and timely teaching feedback. Users rapidly adapt to these platforms because they meet various educational demands. Additionally, the use of virtual assistants and chatbots in adaptive eLearning systems has grown since the COVID-19 pandemic. Although adaptive learning occupies a significant role in education, several issues hinder its widespread implementation. Although the potential of AI is substantial, its integration into eLearning platforms introduces new concerns. Considerations related to confidentiality and privacy are paramount; data-driven platforms engage in data mining and behavioral analysis to deliver personalized learning experiences. Consequently, some users are reluctant to accept AI technologies in such contexts, although younger morning classes tend to be more receptive. Moreover, implementing AI in eLearning presents strategic, operational, technical, and financial challenges.

Deploying AI requires the availability of requisite data and the capacity for

appropriate implementation. Educational institutions often lack the necessary infrastructure and human resources, including sufficient budgets and time, to support such advancements. In many regions, inadequate infrastructure, such as limited broadband coverage, poor internet connectivity, or the absence of adapted devices, impedes the implementation of digital systems. Furthermore, ethical considerations surrounding AI usage have surfaced, highlighting the need for responsible deployment. The full introduction of AI systems also exacerbates inequalities. These disparities manifest across various domains encompassing technological, organizational, attitudinal, and socio-psychological factors, which vary between individuals, settings, and regions. Thus, although adaptive learning continues to evolve steadily, its progression remains hindered by legitimate concerns that must be addressed to facilitate broader adoption.

Growing concerns about data privacy emerge as adaptive learning systems collect and analyze detailed learner information, necessitating ethical considerations to protect users. Issues of equity, access, and fairness also come to prominence given that disparities in digital infrastructure and device availability limit the reach of technology-enhanced education. A heightened dependency on adaptive learning systems renders the capability of functioning independent of technology a crucial societal goal, even as integration improves learning processes.

The ethics of artificial intelligence in education has become a vital topic with the rapid development of AI technologies. Enhanced AI competitiveness could potentially overshadow human abilities, highlighting the urgent need to balance AI and human contributions. In educational contexts, AI is primarily used for adaptive system design, evaluation, individualization, monitoring, and assistance. Ethics, as a discipline, seeks to determine appropriate worldviews and behaviors; in the face of ethical challenges, academics and learners collaborate to establish normative judgments, often through complex interactions and negotiations. Both the opportunities and challenges of AI applications have been examined: potential benefits include support for human self-realization, enhancement of human agency, augmentation of societal capacities, and cultivation of social cohesion; potential risks involve devaluation of human skills, erosion of human responsibility, reduction of human control, and diminution of self-determination. By carefully navigating these factors, society can maintain control over AI while promoting developmental progress, thereby achieving a balance between technological advancement and harmonious social formation.

AI applications in education offer numerous advantages such as personalized learning pathways, automated assessment procedures, and the introduction of innovative instructional methods. They enable computer-assisted collaborative learning and asynchronous discussion environments, supporting cost-effective and tailored educational experiences. Depending on context, AI plays various roles—including acting as an intelligent tutor, serving as a learning tool, or providing policy advisement—facilitating paradigm shifts and technological transformations. Nevertheless, the widespread adoption of AI in educational domains raises ethical challenges concerning regulation and the absence of a universally accepted framework of guidelines. Establishing and adhering to such ethical standards is essential for realizing the full benefits of these technologies while responsibly addressing issues of fairness, privacy, and accountability.

## Conclusion

The integration of artificial intelligence (AI) into educational systems holds substantial promise for the future of learning. AI-driven adaptive learning models

incorporate intelligent tutoring systems, predictive analytics, and real-time feedback to tailor education to the individual learner. Anticipated benefits include increased productivity and accessibility, contingent upon careful implementation that balances innovative technologies with established pedagogical principles. Mathematics and English language learning serve as effective proxies for broader educational applications in comparative studies of adaptive systems.

AI-based adaptive learning models draw upon intelligent tutoring systems that dynamically adjust content based on real-time analysis of student interactions. The systems form and update detailed learner profiles by evaluating behavioural data and provide the student with immediate, targeted feedback throughout the instructional process. Specialist algorithms then select appropriate learning resources, reformulate questions to target specific knowledge gaps, and direct students toward content areas that require mastery. Predictive analytic components evaluate whether learners are prepared to advance, helping maintain an optimal challenge level and supporting continuous intellectual growth.

Emerging trends underscore the pivotal role of artificial intelligence (AI) and machine learning (ML) in shaping the evolution of adaptive e-learning, which dynamically adjusts to learners' characteristics—be it needs, preferences, or performance—with tailored content and feedback (Iyer & Debang, 2023). By tracking individual progress and responding accordingly, such systems enhance self-confidence and effectiveness, underscoring the comparison with traditional educational approaches. Adopting adaptive pathways, in consonance with predictive analytics, fosters personalized, time-flexible instruction that transcends the limitations of conventional alternatives and thereby aligns with the notion of efficiency articulated earlier.

#### Author's Declaration:

I/We, the author(s)/co-author(s), declare that the entire content, views, analysis, and conclusions of this article are solely my/our own. I/We take full responsibility, individually and collectively, for any errors, omissions, ethical misconduct, copyright violations, plagiarism, defamation, misrepresentation, or any legal consequences arising now or in the future. The publisher, editors, and reviewers shall not be held responsible or liable in any way for any legal, ethical, financial, or reputational claims related to this article. All responsibility rests solely with the author(s)/co-author(s), jointly and severally. I/We further affirm that there is no conflict of interest financial, personal, academic, or professional regarding the subject, findings, or publication of this article.

#### References:

1. Dhar, S., & Sharma, N. (Eds.). (2022). Artificial intelligence and the new paradigm of smart education. IGI Global.
2. Khan, M. S., & Al-Samarraie, H. (2022). Adaptive learning systems in Indian higher education: A framework for implementation. In A. M. T. P. S. Bandara & H. R. R. V. E. K. M. Kumar (Eds.), Revolutionizing education in the age of AI and machine learning (pp. 121-140). IGI Global.
3. Kumar, D., & Mantri, A. (2021). AI-enabled adaptive learning platform: A shift from traditional learning. In A. E. Hassanien & A. Slowik (Eds.), Studies in computational intelligence: Vol. 928. Cognitive computing for human-robot interaction (pp. 235-251). Springer.
4. Rout, J. K., & Choudhury, S. (Eds.). (2022). Artificial intelligence for smart education and future learning. CRC Press.
5. Sharma, R. C., & Yildirim, H. (Eds.). (2021). Artificial intelligence applications in education. Springer.

6. Adamu, S. & Awwalu, J. (2019). The Role of Artificial Intelligence (AI) in Adaptive eLearning System (AES) Content Formation: Risks and Opportunities involved. <https://arxiv.org/pdf/1903.00934>
7. R. Kshirsagar, P., B. V. Jagannadham, D., Alqahtani, H., Noorulhasan Naveed, Q., Islam, S., Thangamani, M., & Dejene, M. (2022). Human Intelligence Analysis through Perception of AI in Teaching and Learning. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206552/>
8. Iyer, P. & Debang, M. (2023). The Future of Adaptive E-Learning: Trends and Directions. <https://osf.io/preprints/socarxiv/xs78z/>
9. Nguyen, A., Ngan Ngo, H., Hong, Y., Dang, B., & Thi Nguyen, B. P. (2023). Ethical principles for artificial intelligence in education. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558020/>
10. Kamat, V., & Manjrekar, S. (2021). A comparative study of traditional and modern teaching methodologies with a focus on AI-based adaptive learning. *Journal of Engineering Education Transformations*, 4(Special Issue), 1-6

**Cite this Article-**

*"Nilisha Singh" "A Comprehensive Study on the Role of Artificial Intelligence in Adaptive Learning Systems: Comparing Traditional Educational Approaches", Procedure International Journal of Science and Technology (PIJST), ISSN: 2584-2617 (Online), Volume:2, Issue:7, July 2025.*

**Journal URL-** <https://www.pijst.com/>

**DOI-** 10.62796/ pijst

**Published Date-** 05/07/2025