: Procedure International Journal of Science and Technology :

(International Open Access, Peer-reviewed & Refereed Journal)

ISSN : 2584-2617 (Online)

I Volume- 2, Issue- 7, July 2025 I
| Website- www.pijst.com DOI- https://doi.org/10.62796/pijst.2025v217001 |

Artificial Intelligence in Green Chemistry:

| |
: (Multidisciplinary, Monthly, Multilanguage) :
| |
| |

Optimization of Eco-Friendly Synthesis Routes

Dr. Sandhya Srivastava

Assistant Professor, Department of Chemistry, DAV Degree College, Kanpur.

Abstract

Green chemistry emphasizes the design of chemical products and processes that minimize environmental
impact by adhering to the 12 guiding principles of sustainability. Within this framework, artificial intelligence
(AI) has emerged as a transformative tool to optimize eco-friendly synthesis routes. Traditional synthetic
methodologies often rely on hazardous reagents, energy-intensive conditions, and wasteful trial-and-error
processes. By contrast, Al leverages machine learning models—supervised, unsupervised, and reinforcement
learning—to analyze extensive chemical databases and experimental data, enabling predictive insights
into reaction outcomes, catalyst selection, and retrosynthetic planning. Tools such as SynRoute and computer-
assisted synthesis design (CASD) exemplify how Al can generate viable synthetic routes in seconds, offering
chemists diverse options for environmentally benign transformations. Applications extend to pharmaceutical
synthesis, bile acid derivatives, and green catalysis, where renewable solvents and sustainable catalysts
enhance both efficiency and safety. Case studies highlight AI’s role in optimizing multistep syntheses and
identifying reaction conditions with high yields and minimal by-products. Despite remarkable potential,
challenges persist, including poor data quality, incomplete reaction records, and algorithmic limitations in
predicting reactivity and selectivity. Furthermore, ethical considerations demand transparency, fairness,
and adherence to regulatory frameworks governing chemical processes. Future directions envision integration
with technologies such as flow chemistry and automation, enabling real-time adaptive optimization while
fulfilling sustainability standards. Multidisciplinary collaboration between chemists and data scientists is
critical to harness Al’s capabilities fully. Ultimately, the convergence of Al and green chemistry offers a
powerful pathway to reducing chemical waste, accelerating discovery, and promoting economic, ethical,
and environmental sustainability in modern chemical research.
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Introduction

Green chemistry seeks to transform both the use and synthesis of chemicals with ecology as the
watchword. It embodies a proactive, inherent consideration of environmental impact in the design of
chemicals, materials, products, and processes. Green chemistry thus offers an opportunity to bridge
traditional synthetic organic chemistry practice and eco-conscious practices, thereby harmonizing scientific
practice with economic and sensible regulations. Central to green chemistry is the development of eco-
friendly synthesis routes, which involves employing safer starting materials and methods, minimizing
hazardous by-products, and designing economical and less wasteful pathways (Liu et al., 2023).
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The efficient synthesis of complex molecules mandates ample knowledge not only in chemistry but also
in disparate fields. Due to the rapid growth of chemical data, however, it is impossible for any human being
to amass the knowledge necessary to address and solve the problems faced in daily research. Artificial
intelligence (AI) can be a useful tool in this regard. While Al has been widely applied in chemical synthesis
to improve efficiency, save time and manpower, reduce errors, and enhance safety, the specific use of Al to
aid physicochemical interpretation and knowledge extraction remains limited (Wang et al., 2022). The
emphasis of this review, therefore, is placed on current developments of Al applications aimed at optimizing
eco-friendly synthesis routes.

A comprehensive overview is provided, beginning with the fundamental set of 12 green chemistry
principles, which serve as guidelines for devising more environmentally sustainable and safer products
and processes. Following this, the role of Al is discussed, including an introduction to types of machine
learning methods—supervised, unsupervised, and reinforcement learning—and the various chemical data
sources that underpin tailored studies. Emphasis is placed on the practical significance of these methods,
rooted in commercially available databases, and insights extracted from experimental data. Attention then
turns to the synthesis of pharmaceutical active ingredients, bile acids, and their derivatives, which play
key roles in the transition from traditional to environmentally aware processes. A discussion of a powerful
catalytic approach illustrates the potential for greener routes to pharmaceuticals. Building upon this
foundation, multiple case studies highlight efforts in green synthesis routes that leverage advances in Al
techniques and catalytic routes; these range from replacing scarce reagents to solving longstanding docking
problems. Challenges in implementing Al—including data quality, availability, and algorithmic limitations—
are examined, along with future avenues of development. The review concludes with comments on ongoing
trends, recognizing Al as a valuable tool for acquiring key information and forecasting complex future

scenarios in sustainable chemistry (Klucznik et al., 2018).
Overview of Green Chemistry

Since the introduction of the 12 Principles in 1998, green chemistry has exerted significant influence
over laboratory practice as a means of improving the environmental and economic profile of chemical
processes (Liu et al., 2023). The concept sets out a series of objectives that challenge the scientific community
to develop novel processes that enhance the existing approach to sustainable chemical transformation.
Although the application of artificial intelligence within the field of chemistry can be traced back to the late
1960s, only in recent years has information technology become fully integrated into laboratory-based research.
Through the combined efforts of experimental, theoretical, and computational modelling, the central values
set out by green chemistry can be met in a sustainable manner. The principles of green chemistry,
complemented by the interaction of machine learning algorithms with model- and experimental-derived

datasets, open up alternative paths through the landscape of synthetic development.
The Role of Artificial Intelligence

Artificial intelligence (AI) refers to computer systems that go beyond pre-programmed tasks, learning
and evolving analytically (Liu et al., 2023). Al for Chemistry (AIC) utilizes data analysis and decision-
making to address complex scientific challenges such as pattern recognition, insight extraction, and
relationship discovery. Al can analyze retrosynthesis data obtained from experiments and chemical databases
to generate optimal synthesis steps that satisfy green-chemistry criteria.

Eco-Friendly Synthesis Routes

Eco-friendly synthesis routes are a main facet of green chemistry, involving the design of chemical
pathways that minimize the use and generation of hazardous substances. A synthesis route comprises a
series of chemical reactions used to obtain the target product, associated with a set of time, cost, and
sustainability metrics. The ability to plan and select optimal synthesis routes is therefore an essential
element of green chemistry, with artificial intelligence increasingly leveraged to identify pathways that
significantly improve sustainability performance (Klucznik et al., 2018). The aim is to generate a set of
candidate routes for evaluation by the chemist, highlighting a diverse range of feasible alternatives. As a
representative example, SynRoute exemplifies advancements in computer-aided route design by employing
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a concise set of 263 general reaction transformations to rapidly generate plausible routes for a broad range
of compounds (Latendresse et al., 2023). The selected reactions emphasize well-studied chemistries supported
by sufficient data to enable machine learning models to predict the feasibility of each computer-generated
reaction. Experimental validations have demonstrated that viable routes can typically be identified for
moderately complex, drug-like molecules, although adaptations to laboratory conditions—particularly for
continuous flow chemistry platforms—may necessitate modifications to certain reaction steps. Such tools
not only facilitate the efficient organization and evaluation of multiple route options through an intuitive
user interface but also support the prioritization of compound libraries during early-stage drug discovery
by providing synthetic feasibility assessments within approximately 30 to 60 seconds per compound. The
continued integration of data-driven and in silico approaches within these frameworks underscores their

pivotal role in advancing eco-friendly synthesis planning while optimizing efficiency and sustainability.
Machine Learning Techniques in Chemistry

The most common machine learning tasks supervised, unsupervised and reinforcement learning —
represent different approaches to learning from data. Each technique offers distinct advantages depending
on the problem in question. Besides optimizing eco-friendly chemical synthesis, these methods can address
catalyst design, yield prediction and reaction condition selection. Supervised learning learns from a set of
examples that link input data x with a target output y. Given a training set {(x1, y1), (x2, y2), *n, *n)} the
goal is to estimate the general form of the underlying relationship y = f(x). Models use this relationship to
predict y for unseen x. Most methods produce probabilistic models capable of uncertainty estimation.
Examples include neural networks, Bayesian inference, and support vector machines. Unsupervised learning
identifies underlying structure in a dataset x without reference to a known target y. Two main types
perform either clustering into discrete groups of similar points or dimensionality reduction to reveal lower-
dimensional subspaces that interpret most of the variance in data. While often applied to visualization or
exploratory problems, these methods discover chemical trends and patterns. Algorithms include KO18Means
clustering, principal component analysis, self-organizing maps, and variants such as non-negative matrix
factorization.

Reinforcement learning employs either an actor-only (policy search), critic-only (value function
approximation) or an actor 6critic (both policy and value functions) method for sequential decision-making.
An agent selects actions in response to an environment combined with a reward signal. The agent aims to
maximize expected cumulative future reward through learning how to execute actions that transition
through environment states. Models that formally balance exploration and exploitation learn optimal policies
for selecting later actions that achieve long-term goals. Reinforcement techniques generate additive results
through iterative improvements of policies, in desktop-to-robot workflows, and in autonomous laboratory

systems. (F. Zahrt et al., 2022) (Meuwly, 2021)
5.1. Supervised Learning

Supervised learning, a machine learning technique for building predictive models from training data
consisting of input-output pairs, is a prime method for optimizing eco-friendly synthesis routes. Model
inputs include experimental parameters or molecular structure representations, while outputs are reaction
outcomes or values such as yield or selectivity. The learning algorithm identifies a relationship that
accurately maps inputs to outputs and subsequently predicts outcomes for novel inputs. Empirical records
used for supervised-learning models may derive from published literature, electronic laboratory notebooks,
chemical databases, or virtual screening. The capacity to optimize green synthesis routes is related to
these records’ scope, quantity, and fidelity (Schilter et al., 2024).

Data Sources for Al in Chemistry

Numerous databases and experimental data available for model learning and training constitute a key
enabler of Al for Chemistry. Chematica is an early example, relying on a manually curated logic tree
containing over 10000 reaction patterns and more than 1000 reaction conditions (Liu et al., 2023). Waller
et al. extended this approach by extracting reaction data from Reaxys, generating millions of training
samples for a reaction prediction model. The resulting system undergoes retrospective Monte Carlo tree
search guided by neural networks, markedly outpacing Chematica in planning ability. Large data generated
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in the laboratory represent a promising resource that can complement these approaches. The amount
of experimental procedures published in patents and the scientific literature is also considerable. For
example, high-throughput experimentation generates data on ideal reaction conditions, rendering further
experimentation often inefficient. Logistic regression on a large dataset of 400 reactions is capable of
identifying conditions that strongly favor or hinder a reaction (Wang et al., 2022). Nevertheless, experimental
data gathered under identical conditions on the same reaction remains scarcely available. Al in Chemistry

should thus complement rather than fully replace combinatorial screening.
Chemical Databases

A wide range of chemical databases provide information used to train artificial-intelligence models. One
of the earliest examples of software designed to plan the synthesis of chemical compounds, ICSYNTH,
employs a collection of chemical knowledge, heuristics, and rules to “build” a virtual compound from
fragments to computer-predict the synthetic pathway most likely to produce the target compound (Klucznik
et al., 2018). Starting with a long-known model compound, aspirin, the group discovered a pharmaceutical-
input catalogue of commercially available compounds to train the platform, formulates the inverse of a
computing-assisted the design successfully predicted the synthesis planning system. Similar architectures
have emerged to consider the organic chemistry associated with the planning and contemporary
retrosynthesis (Latendresse et al., 2023) macrocyclic (bioactive) compounds in complex natural products,
most sketching and execution of using well-validated synthesis systems that is—a computational approach
to digestion, preparative, and synthetic strategies for the design of molecules and prototyping of synthetic
pathways. With the imminent forthcoming scarcity of new synthetic-prediction validation, pharmaceutical,
and advanced chemical development is entirely driven by human consideration of chemical networks,
computer-generated predictions direct the experimental approach, have proven useful in the preparation of
a variety of organic compounds, readily accessible commercial biaryl precursors, and numerous (bioactive)
compounds. Transitioning to programme-generated computer-predicted synthetic pathways, the target
molecule from which to search the system successfully predicted the synthesis strategy, pharmaceutical-
input catalogue of commercially available reaction information, and a training dataset of control compounds.
Also of synthetic-chemistry importance, the platform-generated reaction pathways of organic and bioorganic
laboratory and exploration of a platform can access the platform-generated the automatic generation of
organic compounds.

Experimental Data

Experimental data remain a key part of the field of organic chemistry. In addition to the empirical
approach, computer-assisted synthesis planning offers a third major way to predict new synthetic routes.
ICSYNTH, for example, is built around a generative model that suggests collections of retrosynthetic
strategies to prepare a given target. While many examples remain at the level of retrosynthesis plots,
funding has limited experimental validation (Klucznik et al., 2018). Another confirmation method coupled
reaction-template matching with density-functional theory energy calculations. This combination
successfully identified a retro-Claisen rearrangement and proposed alternative conditions for an unreported
reaction that was then experimentally verified. Further progress: reaching optimal reaction conditions is
crucial for high yields, minimal by-products, and environmentally sustainable reactions. Al-driven
approaches have replaced traditional trial-and-error methods, enabling data-driven and automated
optimization. An integrated platform optimized four terminal alkynes and two reaction routes, achieving
over 80% conversion in 23 experiments, covering around 2% of the combinatorial space. Analysis of the
data identified how different reaction parameters influence outcomes, demonstrating potential for faster
condition optimization and more efficient chemical processes (Schilter et al., 2024). Previous methods
relied on trial-and-error techniques like one factor at a time and design of experiments, often depending on
researcher expertise. Bayesian optimization has proven versatile and effective, reducing R&D costs and
improving yields in flow-based reactors for reactions such as Suzuki—Miyaura coupling and C—H activation.
Despite their advantages, BO methods are often seen as black boxes with limited interpretability, which
impedes widespread adoption.
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Synthesis of Pharmaceuticals

The synthesis of pharmaceuticals remains one of the most demanding human undertakings. Computer-
assisted synthesis design (CASD) could greatly accelerate the development and production of new molecules
(Klucznik et al., 2018). Vision is to supply a (medicinal) chemist with a list of pathways and the experimental
conditions to complete each step. Numerous retrosynthetic analysis algorithms have been reported, many
implemented in commercial software platforms. Available synthetic routes to three AZ compounds confirm
route quality. Delineates a useful distinction between planning goals in a pharmaceutical, fine chemical,
and bulk chemical context; prior knowledge within AZ helps identify suitable algorithms. Search speed
evaluated on the CASD subset of the Reaxys database. Efficient search algorithms enable practical
exploration of CASD rules but retrieval of a large number of pathways requires faster search.

Green Catalysis

Green catalysis contributes to safety by facilitating chemical transformations in aqueous media where
appropriate, which is generally safer than handling typical organic solvents with low flash points. Green
catalysts minimize the formation of by-products. Consequently, environmentally friendly solvents
significantly impact asymmetric catalytic processes, serving as the reaction media or solvents for catalyst
preparation or work-up and purification stages (Miele et al., 2022). Alternatively, catalysts derived from
renewable resources are also a viable option, often demonstrating improved catalytic performance relative
to their fossil-based counterparts. Various catalytic transformations may be optimized for reactions conducted
in environmentally friendly solvents under laboratory conditions. Catalysts prepared from renewable sources,
particularly those that can also act as chiral inducers through stereogenic centers on the catalyst structure,
play a particularly important role. Beyond common hydrogenation reactions, other transformations warrant
the development of innovative asymmetric catalytic protocols (G. Quesne et al., 2019). Access to novel
environmentally friendly solvents widens the options available for sustainable asymmetric processes and
promotes the enhanced exploitation of renewable-material-derived catalysts.

Challenges in Implementing Al

The implementation of artificial intelligence systems in green chemistry confronts notable challenges
related to data quality, data availability, and the constraints of chemical reaction algorithms. Machine
learning methods require not only quantity but also quality, diversity, and balance in data coverage to
effectively represent candidate structures or potential actions (Gao et al., 2022). Although large chemical
datasets are accessible, even leading repositories contain incomplete and low-quality reaction records,
further exacerbating the data scarcity problem. Extracted chemical reaction records from published scientific
articles and information related to reaction templates supplement existing data sources and should be
continuously integrated to ensure up-to-date coverage (Wang et al., 2022). Furthermore, current status of
Al-controlled synthesis still faces restrictive workflow procedures, hindering broad adoption. Overcoming
these limitations remains an active area of work and a key focus for the advancement of Al-driven traditional
chemistry laboratories.

Data Quality and Availability

Achieving optimal reaction conditions is a key component in executing chemical reactions with high
conversion and yield while maintaining environmental sustainability and minimizing waste (Schilter et
al., 2024). Consequently, artificial intelligence has transformed condition optimization from a trial-and-
error procedure into an automated, data-driven methodology. An integrated platform that combines Bayesian
optimization with automation simultaneously optimizes reaction conditions and synthetic routes for terminal
alkynes. The platform conducts 23 experiments, corresponding to approximately 2% of the combinatorial
search space, and attains conversions exceeding 80%, demonstrating the potential for rapid reaction
optimization and enhanced process efficiency. Early methods such as trial-and-error and design of
experiments depended heavily on the expertise of individual researchers. Bayesian optimization techniques
have effectively reduced research and development expenditures while improving reaction yields in the
optimization of flow-based transformations, including Suzuki—Miyaura coupling and C—H activation. High
yields are often achieved after evaluating only a small subset of the total configuration space. Nevertheless,
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the limited interpretability of such black-box Bayesian optimization models presents a barrier to their
widespread adoption, particularly when addressing large search spaces.

The vast majority of publicly available reaction data is documented in an unstructured format and
exhibits a strong bias towards high-yielding reactions, influencing the range of models that can be
successfully developed. Several factors contributing to the success of data curation and sharing initiatives
in chemistry and molecular biology provide guidance for handling reaction data; the Open Reaction Database
represents a notable effort to render reaction data more findable, accessible, interoperable, and reusable
(FAIR). Advances in the reporting of laboratory synthesis procedures, encompassing detailed reaction
conditions, remain essential for maximizing the impact of artificial intelligence on organic synthesis.
High-quality data should comprise observed products, yields, selectivities, impurities, and other relevant
summary statistics obtained under a variety of experimental conditions (Mercado et al., 2023).
Algorithm Limitations

Each algorithm has a specific range of applications and limitations. Retrosynthesis software can suggest
cost-effective syntheses considering only commercial reagents (Latendresse et al., 2023). These tools often
generate numerous arbitrary one-step reactions, resulting in inefficient production. Postprocessing is used
to identify a limited set of potential routes, which often remain impractical. Reaction predictions typically
exclude crucial information regarding the quantities of reactants, solvents, and catalysts, as well as
experimental conditions such as temperature and the order of reagent addition. In an analysis of 1,591
reactions from five open-access reaction databases, 696 (43.7%) provided insufficient information to generate
accurate predictions, underscoring the significance of this challenge (Klucznik et al., 2018). Moreover,
assessing the inherent reactivity and selectivity of reagents and reactants remains a major challenge;
despite recent advances, current algorithms consider only the most common products, neglecting subtle

effects critical for defining synthetic routes (Gao et al., 2022).
Future Directions

Ongoing research suggests that computer-assisted synthesis planning (CASP) represents a promising
direction in the advancement of green chemistry. Despite the range of potential applications, validated
experimental demonstrations of CASP-driven synthetic routes remain limited (Klucznik et al., 2018).
Integration of emerging technologies is expected to advance Al-assisted modeling, formulation, and reaction-
planning integration. Moreover, as regulatory frameworks evolve within the global chemical engineering
sector, opportunities to incorporate advanced active-learning Al frameworks are likely to increase (Liu et
al., 2023).

Technologies such as flow reactors and continuous processing can be seamlessly integrated with computer-
aided synthesis planning. When the routes generated by SynRoute are applied to flow reactors, the result
is an automated system for flow synthesis of organic compounds. Several works have explored the
combination of flow chemistry systems and powerful computer-aided synthesis planning programs
(Latendresse et al., 2023).

Inappropriate chemical synthesis significantly harms the environment. Thus, stringent regulations
controlling the emission or discharge of hazardous substances are essential. Every chemical synthesis
must comply with relevant laws, considering factors such as resource consumption, toxicity, and production
costs. Artificial intelligence assists in designing eco-friendly synthesis routes while fulfilling regulatory
requirements. Data regarding environmental laws and direct and indirect costs are vital for this approach.
AT Chemistry consists of computational tools and computer programs assisting chemists in conducting
chemical studies, offering expertise on specific topics, and facilitating knowledge interchange (Wang et al.,
2022). Computer-aided synthesis planning (CASP) programs evaluate possible sequences for producing
target molecules (Klucznik et al., 2018). Such systems learn from databases drawn from literature or
commercial sources, accumulating knowledge on synthesis plans, methodologies, and reactions. Recent
years have seen a proliferation of publicly available reaction databases and open-source programs
implementing AS techniques.
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Ethical Considerations in AI Applications

Al systems should address ethical implications of the chemical research and development process and
outcomes. A comprehensive process encompasses defining desired properties, Al-based design of molecular
structures, automated in-silico characterization and property evaluation, ranking of promising candidates,
and Al-based reaction design for support of automated laboratory experiments. The object of development,
illustrated by pesticides that are vital for food production and storage but present environmental and food
chain contamination risks, demands ethically responsible conduct. Applications in sustainability consider
all stakeholders involved with respect to potential tensions between collective and individual benefits and
costs. Guiding principles include beneficence, non-maleficence, autonomy, justice, and explicability (Hermann
et al., 2021).

Environmental sustainability represents one of the most significant challenges of the twenty-first century,
demanding substantial reductions in the impact of human activities. The foundation for such advancements
is Green Chemistry, a discipline devoted to both the design of environmentally friendly processes and the
avoidance of wasteful procedures. Since the twentieth century, chemists have pursued research that prioritizes
sustainability (Liu et al., 2023). In parallel, Artificial Intelligence (AI) introduced concepts and tools capable
of accelerating the identification of new materials and exploring promising synthesis routes (Hermann et
al., 2021). The intersection of these fields offers opportunities for the optimization of eco-friendly synthesis
routes. By combining Al techniques with Green Chemistry systems, it is possible to accelerate the synthesis
of reduced-impact pathways that adhere to the twelve principles.

Economic Implications of Green Chemistry

Green chemistry has attracted increasing attention during the past years as an attractive and attractive
alternative technology in organic synthesis. Green chemistry refers to a set of principles intended to reduce
or eliminate the environmental burden before the step of waste treatment and it embraces the concept of
atom economy and non-hazardous substances leading to sustainable and eco-friendly technologies. Machine
learning (ML) methods have proved to be promising to elucidate the complex relationship between
experimental parameters and system performance and widely applied due to their high ability to discover
the underlying complex mechanistic data. The demand for eco-friendly routes has attracted substantial
interest in ways to determine optimal conditions and synthetic schemes for their realization. In this regard,
artificial intelligence (AI) represents a new interesting and constantly developing approach to improving
optimization, especially when multiple objectives and a variety of restrictive conditions must be considered.
The economic implications of green chemistry are discussed in relation to the potential benefits and factors
influencing sustainability.

Green chemistry has attracted considerable attention as an attractive alternative in organic synthesis.
It refers to a set of principles designed to reduce or eliminate environmental burdens prior to waste treatment,
embracing concepts like atom economy and non-hazardous substances to achieve sustainable and eco-
friendly technologies. Machine learning (ML) methods have proven promising for elucidating the complex
relationship between experimental parameters and system performance; their high capacity for uncovering
underlying mechanistic data has fostered widespread application. The demand for eco-friendly routes has
stimulated interest in methods to determine optimal conditions and synthetic schemes. Artificial intelligence
(AI) thus emerges as a rapidly evolving approach for optimization, particularly when multiple objectives
and various constraints must be addressed. (Liu et al., 2023) (Klucznik et al., 2018)
Educational Aspects of Al in Chemistry

The integration of A.IL. in chemistry offers a means to accelerate the discovery and development of new
materials that actively support the formation of a sustainable society, notably by optimizing eco-friendly
synthesis routes (Liu et al., 2023). Beyond mere significance for a sustainable society, the application of
A.L enables the rapid development of new materials with the potential to solve a wide range of global-scale
challenges. Education in A.I. supports the application of digital tools within chemistry and chemical
engineering by cultivating individuals capable of interdisciplinary collaboration. Specifically, it develops
professionals proficient in programming who can identify relevant research problems and communicate
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effectively with data scientists and computer engineers (Wang et al., 2022). Such education thereby
addresses essential prerequisites for the advancement of sustainable and efficient manufacturing processes
through digital technologies, underpinning the environmentally friendly synthesis of pharmaceutical and

agricultural intermediates.
Conclusion

Artificial intelligence has emerged as an invaluable tool in the pursuit of eco-friendly synthesis routes.
Its applications encompass various activities vital to green chemistry, including the design of novel materials,
elucidation of chemical structures, prediction of thermodynamic properties, reaction analysis, and allocation
of synthetic pathways (Klucznik et al., 2018). By employing classifications such as breadth-first, depth-
first, and heuristic-driven search algorithms, optimal synthetic solutions can be identified with reduced
time and associated costs. Merging extensive data collections with deep learning models promises further
refinement of the optimization process (Liu et al., 2023). Nevertheless, several challenges persist before
artificial intelligence achieves widespread adoption across chemical research laboratories. The imperative
for alternative chemicals, medicines, and fuels to replace currently employed ones—often scarce or
environmentally detrimental—has intensified due to growing socio-economic and environmental concerns.
Green chemistry aims to address this by exploiting catalytic systems, such as transition metal catalysts,
under benign conditions to establish atom-efficient reactions with minimal by-products, thereby reducing
the environmental footprint (Wang et al., 2022). However, many effective catalytic systems are discovered
by chance rather than design, pointing to the need for more rational approaches. Quantum chemical
simulations and molecular dynamics exemplify the computer-assisted design protocols employed to
understand and design these systems more effectively. Artificial intelligence can thus play a crucial role in

optimizing eco-friendly synthesis routes in line with green chemistry principles.
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