

## **Climate Change and Its Impact on Wildlife Migration Patterns**

**E. A. Semolu**

*PhD (Environmental Microbiology), Akure, Nigeria*

### **Abstract**

Climate change has emerged as a critical driver of ecological disruption, profoundly influencing wildlife migration patterns across terrestrial, avian, and marine species. This paper explores the mechanisms by which anthropogenic climate change—driven primarily by greenhouse gas emissions, habitat alteration, and global warming—alters migration schedules, routes, and destinations. Evidence from global climate models highlights shifts in the timing of departures and arrivals, with mismatches between migratory events and resource availability increasingly common. Case studies demonstrate species-specific responses: birds advancing spring migrations, marine turtles altering timing and routes, and terrestrial mammals adjusting calving or foraging sites. These disruptions threaten breeding success, population dynamics, and ecological stability, while also amplifying risks of biodiversity loss and ecosystem imbalance. Conservation strategies such as assisted migration, ecological corridor management, and expansion of protected areas are discussed alongside policy interventions like the Migratory Bird Treaty Act and Marine Mammal Protection Act. Future research directions emphasize the role of technological innovations, long-term ecological monitoring, and public engagement in strengthening adaptive responses. Ultimately, the study underscores that safeguarding migratory species against climate-induced threats is imperative for maintaining ecological resilience and biodiversity in the Anthropocene.

**Keywords:** Climate Change; Wildlife Migration; Global Climate Models; Phenological Shifts; Breeding and Feeding Patterns; Biodiversity Loss; Ecosystem Disruption.

### **Introduction**

A vast migration is underway but it involves more than 2 million people around the world who are moving because of changing climates. Massive, landscape-wide change continues in rangewide migratory circuits, novel movement schedules, novel destinations, and directional shifts in movement. Such shifts disrupt breeding and feeding schedules and cause a range of consequential ecological effects. Migration—the idiomatic large-scale movement of animals—is a truly planetary process every year. Migration confers remarkable ecological and evolutionary advantages to multiple

taxa (L. Fischman, 2011). The last great frontier of wilderness is the migratory corridor, a corridor that increasingly looks like the first to disappear. Climate change — a period-like change in average weather conditions over a period of at least 30 years — operates through widely recognized forcings related to human activities and a longer-term cycle related to ca. 1,000 — year fluctuations in the Earth's orbit (J. Lawler et al., 2009). The result, a globally operating ecological process, offers insight into understanding a potentially broader biosphere-wide phenomena. Indeed, such cascading linkages of novel and complex effects suggest a broad and underappreciated port of long-term ecological impact.

Climate change denotes alterations in Earth's climatic patterns primarily resulting from intensified solar radiation retention and significant human activities that intensify the natural greenhouse effect. The anthropogenic enhancement arises chiefly from land clearing, elevated carbon dioxide (CO<sub>2</sub>) levels prompted by industrial and vehicular emissions, and the increased release of other greenhouse gases (L. Graham, 2018). As the recognized consequences of climate change intensify, substantial changes in the ecosystems occupied by various species are foreseeable. These alterations could exert considerable influence on animal populations and migration patterns. The Intergovernmental Panel on Climate Change (IPCC) has produced a series of models forecasting global mean surface temperature shifts up to 2100 under different greenhouse-gas emission scenarios; such projections constitute the scientific foundation for assessing potential impacts of climate change on ecological systems and animal behaviours.

The global climate is undergoing significant shifts, often referred to as global climate change, characterized by pronounced variations in weather conditions caused by changes in the Earth's atmosphere. The term climate encompasses any state of the atmosphere, and, consequently, climate change may have been an ongoing process throughout the Earth's existence. While climate change can indeed refer to natural alterations, the main threat currently is anthropogenic climate change brought about by human activity. According to the United Nations Framework Convention on Climate Change (UNFCCC), climate change arises from direct or indirect human activity that modifies the composition of the global atmosphere.

Climate change and global warming present some of the greatest challenges for the twenty-first century. Since the Industrial Revolution, vast quantities of greenhouse gases have been released into the atmosphere due largely to human activity, leading to a rise in global average surface temperature of approximately 0.6 °C. This change has been accompanied by an increase in extreme weather events such as droughts, heavy precipitation, and floods. Over the last year, the earth's atmosphere was closely monitored through more than 200 measurements worldwide within the framework of a global network for cooperation in the study of climate change. Advanced global climate models were employed to better understand the basic functioning of the Earth's climate system and its Recent Changes and Current Effects on Migration Patterns response to increasing concentrations of greenhouse gases and aerosols from human activities. These models aim to predict the possible future of the Earth's climate and provide crucial information about the risks and sensitivities of the natural and social systems.

Climate change drives a continuous alteration in the planet's climate system, leading to increased atmospheric carbon dioxide, elevated global temperatures, shifts in weather patterns, rising sea levels, and the more frequent emergence of severe climatic events. Global climate models provide quantitative assessments of these anticipated variations under various anthropogenic activity scenarios. For a zoologist, published scenarios

on expected climatic change furnish essential insights into potential impacts on seasonal phenomena and animal migration patterns (J. Lawler et al., 2009) (Cunze et al., 2013).

### Wildlife Migration: An Overview

Migration is the large-scale, often seasonal, movement of individual animals, usually in response to changes in resource availability or climatic conditions (L. Fischman & B. Hyman, 2010). These movements influence the structure and dynamics of populations, communities and ecosystems on the breeding, stopover and non-breeding grounds. Migration serves as a key ecological process connecting populations across large geographical areas and is carried out by a wide variety of animals, including birds, fish, amphibians and reptiles, mammals, molluscs and insects. The associated transfer of nutrients and energy can exert a strong effect on local ecosystems. Individual animals undertake migration using different methods and pathways. The principal types of animal migration are: complete, partial, differential and irruptive.

The significant influence of climate change on wildlife migration patterns has become increasingly apparent, drawing scientists' attention to the consequences for birds, marine life, and terrestrial mammals. Migration is the movement of animals between different locales in accordance with the seasons. Three basic sorts of migration are observed: latitudinal migration involves movement toward the equator; longitudinal migration involves movement to lower elevations, such as from mountainous areas to plains; and altitudinal migration entails movement to higher elevations. Migration permits animals to follow fluctuating resources, exploit seasonal opportunities, and avoid unfavourable conditions (L. Fischman & B. Hyman, 2010). Climate change, also called global warming or climate change, is a gradual increase in the earth's surface temperature. It is caused mainly by increasing concentrations of greenhouse gases produced directly and indirectly by human activities. In climatology, Global Climate Models attempt to predict how climate might vary on various timescales under changing conditions. Climate change and migrations are intimately interrelated. Increased temperatures modify global precipitation patterns, which have an impact on winds, potentially leading to drought or flooding. These shifts affect migratory behavior and routes. The timing of migration, the direction of migration, and the destination of migrants may change. Such changes can disrupt the entire seasonal schedule of migratory animals and cause major problems for breeding and feeding (L. Fischman & B. Hyman, 2010).

Migration can be described as the movements of individuals, populations, or species, often on a large scale and with a seasonal character (Cunze et al., 2013). Migration is a widespread phenomenon throughout the animal kingdom, with many species crossing barriers such as deserts, mountains, and oceans (J. Lawler et al., 2009). A wide variety of routes and destinations are used, and the timing of these movements is often critical for reproductive success or survival. Animal migration therefore ought to be understood as a repeated movement between different geographical locations, and in which a particular locality plays a significant role. Except for those commuting between their dens and feeding areas, daily movements related to foraging and hunting can generally be excluded from the patterns of migration. The movements of many animals are cyclical and predictable, with repeated journeys over a specific route or between certain localities. In contrast, migration can also be a more irregular phenomenon which may be triggered by external factors such as weather, food supplies or the breeding success of a local population. Some animals have an innate compulsion to migrate, and when prevented from doing so, either die or produce offspring deficient in certain biological qualities, e.g. the ability to orientate and navigate.

Animal migrations can be divided into two broad classes or categories with many subgroups. They are classified according to the temporal and spatial scales of movement involved, and the frequency of the events. The two main forms of migration are: annual migration and lifetime migration.

### Effects of Climate Change on Migration Patterns

Alterations in wildlife migration patterns induced by climate change manifest in shifts of departure and arrival dates, thereby influencing well-established migratory schedules. Both avian and insect taxa initiate migration at earlier points within their seasonal cycles, concomitant with modified routes of travel. Such timing adjustments ensue from transformations in wintering-site conditions and breeding-site phenology. Subsequent alterations in route and schedule expose migratory species to suboptimal resource availability en route, potentially resulting in diminished survival and recruitment, alongside impaired breeding success. At breeding sites, the early arrival of spring fosters a mismatch between the timing of peak food-resource availability and the phenology of breeding activities (J. Lawler et al., 2009).

Climate change impacts not only the movement of migratory animals but also the timing of migratory events. Migratory species may initiate their journeys earlier or later or pass through stopover points at different times. For example, raptor spring migration in Western Europe now occurs approximately 4–5 days earlier than in 1980 (Jaffré et al., 2013). Timing alterations also appear along North American coastlines, continental flyways, and at ecological staging zones (K. Waller et al., 2018). A critical consequence arises if migratory species do not adjust their schedules to counterbalance shifts in resource phenology, potentially breaching the ecological synchrony that evolved from long-term species-specific adaptations.

Migratory timing is sensitive to climatological changes, and insufficient desynchronization may engender substantial population-level effects. Resource-timing mismatches are currently recognized as significant drivers of population declines in multiple migratory bird taxa, spanning passerines, shorebirds, and hummingbirds. Two hypotheses illustrate the reasoning. One postulate—Breeding-Area Residence Time (BART) constancy—suggests that spring arrivals that occur prematurely relative to historical norms precipitate earlier post-breeding departures, shifting migration timing correspondingly. Alternatively, a more climatically suitable autumn could defer departure, thereby extending BART and likewise modifying migration schedules.

Climate change has had a profound impact on fauna, forcing many species to adjust their migration routes (Jaffré et al., 2013). The alteration of annual migratory commitments has caused a collapse of all major migratory flyways (Bellisario et al., 2023).

Various drivers have impacted the progression of many terrestrial avian migrants through the progression of climate change. The most notable drivers are a regime shift that occurred in the Eastern Mediterranean in the early 1980s, the earlier Greening of the Sahara since the 90s, and a large-scale intrusion of the Saharan Air Layer over the southern Mediterranean. Lully et al. extracted and classified the main migratory flyways over a multidecadal period, from 1979 to 2020, based on the life-tracking of migratory birds, geolocated by the Meteosat satellites. The main flyways of the Mediterranean basin have progressively decreased, with the most massive collapse appearing over Egypt, with all routes closing on the Eastern Mediterranean between 1996 and 1998. Over the Tropics, the aerial migration across the equator is smaller but has increased, while the Collision Risk Index has followed different trajectories over the whole region. As a result of the combined impact of climate and human pressures, the main migratory

flyways appeared to be close to only few key areas, such as the Strait of Gibraltar, leading to a severe threat to migration on a global scale.

Climate-driven shifts in migration timing can foster mismatches between arrival and peak resource availability. Birds shifting breeding ranges polewards frequently exhibit corresponding changes in migration schedules. For example, advances in spring temperature affect selection on breeding date and influence the potential for phenological mismatch (Telenský et al., 2020). These mismatches can alter breeding phenology and population distributions; species lacking concurrent phenological adjustment often experience decline. Such effects are particularly pronounced in long-distance migrants inhabiting seasonal habitats, where shifts in migration timing impact population size and nesting success (K. Waller et al., 2018). Mismatches with food availability not only influence population sizes through altered breeding success but may also increase the risk of nest predation due to prolonged vulnerability periods. Climate change can engender differential shifts in the temporal organisation of annual cycle stages, thereby constraining the scope for phenological adjustment through modified migration speed. Breeding dates moreover correlate with the timing of key migration phases, exemplified by pied flycatcher populations across subpopulations with varying reliance upon resident species. As such, climate change has the potential to alter competitive interactions between resident and migratory birds, occasionally yielding severe consequences. Adaptive phenotypic plasticity and diet flexibility may partially mitigate these constraints, yet the persistent challenges underline the influence of climate variability on avian Afro-palearctic migrant demographic rates. Overall, animal migrants respond to rapid environmental changes through alterations in timing and behaviour, while range shifts underscore the widespread influence of climate change on species movements. Livestock migration remains relatively resilient, although sub-population variation in timing and interval length is evident.

### Case Studies of Affected Species

Concrete examples reinforce theoretical discussions and illustrate broader patterns. Consider avian species such as the Western Yellow Wagtail. This bird has altered migratory destinations in the wintering grounds (L. Fischman, 2011). Displacement throughout migration corridors continued to the sites where birds arrive to breed, showing latitude-specific responses to increasing temperature.

Marine turtles exhibit widespread migratory shifts. For instance, the loggerhead turtle sometimes poses statistical evidence for altered timings, while the hawksbill turtle furnishes data that rule out the natural variation hypothesis. Analysis points to a nearly synchronous global response to climate change, revealing rapid migration shifts dating back approximately two decades. Numerous terrestrial species also demonstrate climate-driven migration changes. Wildebeest on the Serengeti plains undertake shorter migration journeys in drier years. Caribou in the Arctic shift their calving locations, possibly adjusting to weather trends. European roe deer advance spring migration timings considerably after warmer winters, confirming consistent advancement. Ungulate acceptance of higher-altitude foraging sites suggests a possible decrease in migration distances. Such adjustments imply resilient behavioral and evolutionary mechanisms.

Bird migration, a seasonal movement typically depending on direction and distance, enables animals to exploit time-limited and patchy resources (S. Rushing et al., 2020). Spring migration of temperate species from winter grounds to summer breeding areas constitutes a physiologically and ecologically demanding phase in the annual phenological cycle. Fitness and population dynamics of migratory birds are often

thought to be closely linked to successful breeding, emphasizing the importance of accurate timing for maximizing reproductive output and survival through coordinated arrival, breeding, and food-supply timing. The timing of migration also affects individual conditions for the remaining year and subsequent migration periods. Barriers like large water bodies generate widely different strategies, and birds from northern latitudes often take longer than those breeding further south. Despite significant reliability and precision in timing, migratory behavior remains highly flexible to respond to environmental perturbations. Climate change amplifies the degree of variation within and between populations and has sometimes led to opposite directional changes in the temporal distribution of migratory events.

Changes in migration patterns of marine species have been observed around the world. They have manifested as shifts in the timing of migrations and/or in the migratory route. These shifts have caused numerous species to arrive either long after, or much earlier than, other species with which they interact. Because these species have synchronised their migrations in order to maximise breeding opportunities, any break in the synchrony may result in a reduction in breeding success and even mortality in the species' young. The timing of marine migrations is often related to the timing and location of plankton blooms. Some species migrate offshore to avoid storms and there is evidence that these migrations change when storm patterns change (C. Jones et al., 2013).

Species with a limited range have already been lost from UK waters during the last 40 years and the ranges of many others have been affected. A particularly important group of marine migrants is the marine mammals, including cetaceans and pinnipeds. Members of these groups are among the most charismatic marine fauna and have a high public profile, making their conservation particularly important. They are also commercially important, forming the basis for several multi-million-pound tourism industries.

Terrestrial mammals play multifaceted roles in ecosystems: as predators, grazers, scavengers, seed dispersers and ecosystem engineers. Through these functions, they have the potential to exert strong top-down and bottom-up effects on entire ecosystems and food webs. The loss of a single species can therefore initiate cascading effects that influence numerous other species within that assemblage (L. Graham, 2018). Many terrestrial mammals are also important umbrella and indicator species used in assessments of ecosystem health. Approximately 25 to 36% of terrestrial mammal species listed by the IUCN are threatened with current extinction, largely as a result of habitat loss, habitat degradation and overhunting. The threat posed by climate change to these species is nonetheless still largely unknown, raising significant concern.

### **Ecological Consequences**

Changes in migration patterns may jeopardize animals' ability to survive climate change and therefore amplify extinction risks. Persistent disruptions in trophic interactions weaken ecosystem function and stability (L. Fischman, 2011). Declining migratory populations erode the ecosystem services that migrations provide to human communities. Climate change therefore creates an urgent zoological imperative to conserve migrations. The impact of climate change on biodiversity is substantial. Correlations between species numbers within a region and that region's mean climatic conditions reveal climate as the principal driver of biodiversity gradients at a global scale (T. Kerr, 2020). Nonetheless, such correlations need to be translated into explicit mechanisms by which climate influences species distributions. This translation has been achieved through analyses of niche conservatism—i.e., the conservation of

physiological tolerances within lineages—and evolutionary origins that pinpoint likely sources of species most susceptible to rapid warming and guide actions such as the identification of supplementary refugia and enhancement of landscape connectivity. The strong interaction among the physical environment, habitat availability, and human activities underscores that global change will continue to dictate the fate of biodiversity in coming decades. Several studies have demonstrated that the combined effects of land use change, climate change, and species traits jeopardize many vulnerable taxa around the world, noting that the impacts of climate change on species persistence will be worsened where land-use barriers hinder distributions shifting. Research into landscape connectivity clarifies how habitat corridors can mitigate extinction risks and inform conservation planning.

Climate change periodically modifies physical conditions, imposing perturbations on systems at all levels of organization (L. Fischman, 2011). Within the developmental kernels of many migrating species, temperatures and other climate variables function as proximal cues controlling the timing of movement. Abrupt changes in existing phenologies or dispersal patterns may therefore result even if the overall environment is simply displaced, without change in magnitude of temperature variation. Displacement of movement phenologies can have cascading effects on other life history activities such as breeding and moulting, and exposure to suboptimal environments for period of the annual cycle can be prolonged. Climate-change responses may also pertain to shifts in migration route or destination because of spatial changes within other key biotic and/or abiotic resources, or because of human intervention. Either choice alters the optimal timing for movement and subsequent events in the annual cycle, with implications for survivorship and fecundity. In the special case of multigenerational migrations that depend on inherited environmental knowledge, the possibility of forced navigational errors carries serious risks for success. Species do not respond identically to climate change, and major mismatches can develop in both time and space among species that currently occupy different trophic positions. The implications for existing community structure and trophic dynamics and the maintenance of competitive relationships are profound (T. Kerr, 2020).

### Future Research Directions

Technological innovations have transformed the scope and precision of wildlife research, enabling new methods such as GPS satellite tags and sophisticated data loggers to track population movements and environmental conditions across large temporal scales. Analysis of historical data remains crucial for forecasting migration trends that contribute to better predictive modeling (L. Fischman, 2011). Longitudinal studies in both controlled and natural environments are essential for elucidating how migratory behaviors may continue to evolve in response to ongoing climate modification. The development of effective conservation strategies will inevitably depend on insights generated through these complementary research approaches (Cunze et al., 2013).

The concept of “technological innovation” refers to changes that improve the technical means of making an object. In a narrow sense, innovations mean the invention of new devices or techniques. In a broad sense, they also mean the upgrading of existing devices or techniques, which contribute to improved design, simplified manufacturing, and more convenient operation. In the last 150 years, technological innovations have been spectacular. The steam engine and turbine, the telephone, the automobile, the airplane, the chemical industry, the electric generator, the cable and wireless, computers, the transistor, atomic energy, and new synthetic materials have played a revolutionary role. In modern societies, technological innovations have led to a transformation of the

economic, social, and cultural framework.

Changes in climate have significant effect on timing, route, and destination of migratory movements. Climate change also caused earlier cessation of migration in late-autumn migratory birds, potentially affecting breeding. Many animals respond to climate change like phenological and physiological adjustment, range shift, or hibernation, migration, or even becoming extinct. Investigating the migratory response of species populations allows a refined perspective on climate change impact for models that forecast future populations. Tracking migratory behavior at long-term level is essential to forecast future migratory dynamics and estimate change impact. Animal responses to climate change reported by decades of animal distribution and abundance studies highlight climate change effects on timing of breeding, hibernation, and migration periods. Climate change caused pronounced changes in migratory behaviour, including its timing, phenology, route, and distribution. Since migratory behavior directly influences egg-laying date, molting timetable, wintering region, and breeding ground of migratory birds, changes in patterns can affect life-history traits and consequently fitness and population dynamics (Bókony et al., 2019).

### Public Awareness and Education

Public Awareness and Education are imperative to effecting social and political change supporting initiatives described above (L. Fischman, 2011). Media campaigns, informational programs, and audiovisual presentations can inform the public about the effects of Climate Change on Wildlife Migration, such efforts may facilitate active involvement through legislation, community programs, and citizen science activities. Within the zoological context, one of the key international bodies promoting understanding of climate change is the Intergovernmental Panel on Climate Change (IPCC), which was established in 1988 by the World Meteorological Organization and the United Nations Environment Programme. The IPCC regularly publishes reports assessing global climate patterns, effects, and mitigation strategies. Because of the global scale of the phenomenon, scientists have developed global climate models based on mathematical equations that can reasonably show worldwide climate trends through time and space.

Several computer-generated global climate models suggest that Earth's surface temperature will likely increase by the end of this century, but the magnitude of temperature change varies among models depending on assumptions about future emissions. Increased temperatures in the atmosphere are very likely to lead to changes in regional climate, including shifts in precipitation patterns and oceanic circulation. Models also suggest that the frequency and severity of disturbances such as droughts, floods, and hurricanes may increase with elevated atmospheric temperatures. Migration is the movement of individuals from one location to another on a regular basis. The timing of migration is often adjusted in response to environmental indications, so the onset of particular seasons triggers movement from residence sites to breeding grounds or from breeding grounds to nonbreeding grounds. In some cases, the location of residence sites may shift depending on the availability of essential resources, leading to variation in the routes and final destinations of migrants over time. Migratory behavior therefore enhances individual fitness by allowing movement away from unfavourable habitats either to find better resources or to escape increasing competition or predation.

The intensity and duration of migration can vary dramatically because some species move only a few kilometres between wet and dry seasons, whereas others undertake daily vertical migration involving vertically oriented movement between several

hundred metres or more from the surface to deeper water. Migration is an important ecological phenomenon because many species have adopted a migratory life cycle to adapt to seasonal variation in local conditions. When migration patterns are disrupted or the timing is altered, individuals may find themselves arriving on breeding grounds before the emergence of essential food supplies or after the end of the breeding season.

### Conclusion

Given the rigid and highly conserved triggers in many migratory species, animals unable to modify departure timing or those depending on habitats that are melting, burning, submerged, or converted to agriculture will potentially cease to migrate altogether. Daily and seasonal movements, such as altitudinal migration, are likely to be affected by the non-conservativity of the mechanisms involved in triggering these smaller-scale mass movements. As these seasonal movements allow animals—including tropical species—to deal with seasonal changes in resource availability, failure to adjust them will place at risk both permanent residents and migrants. Alterations in migration patterns will generate cascading impacts throughout ecosystems and climate systems, including an increased liability to diseases (L. Fischman, 2011). Modifications in migration timing also tend to have significant indirect consequences. Migrants usually time arrival to breeding, snowmelt, or peak vegetation or insect productivity. Therefore, the risk of arriving off-peak and consequently failing to reproduce or survive is likely to increase. In turn, this trend may either affect migratory populations or select for sedentary or partial migration tendencies.

### Author's Declaration:

The views and contents expressed in this research article are solely those of the author(s). The publisher, editors, and reviewers shall not be held responsible for any errors, ethical misconduct, copyright infringement, defamation, or any legal consequences arising from the content. All legal and moral responsibilities lie solely with the author(s).

### References:

1. Fischman, R. L. (2011). Migration conservation: A view from above. <https://core.ac.uk/download/232654376.pdf>
2. Lawler, J. J., Shafer, S. L., White, D., Kareiva, P., Maurer, E. P., Blaustein, A. R., & Bartlein, P. J. (2009). Projected climate-induced faunal change in the western hemisphere. *Conservation Biology*, 23(2), 385–394. <https://core.ac.uk/download/215441915.pdf>
3. Graham, T. L. (2018). A global-scale evaluation of mammalian exposure and vulnerability to anthropogenic climate change. <https://core.ac.uk/download/211520436.pdf>
4. Cunze, S., Heydel, F., & Tackenberg, O. (2013). Are plant species able to keep pace with the rapidly changing climate?. *Global Ecology and Biogeography*, 22(12), 1216–1225. <https://core.ac.uk/download/14530323.pdf>
5. Fischman, R. L., & Hyman, J. B. (2010). The legal challenge of protecting animal migrations as phenomena of abundance. *Virginia Environmental Law Journal*, 28, 173–219. <https://core.ac.uk/download/232647816.pdf>
6. Fischman, R. L., & Hyman, J. B. (2010). The legal challenge of protecting animal migrations as phenomena of abundance. *Virginia Environmental Law Journal*, 28, 173–219. <https://core.ac.uk/download/232658126.pdf>
7. Jaffré, M., Beaugrand, G., Goerville, É., Jiguet, F., Kjellén, N., Troost, G., Dubois, P. J., Leprêtre, A., & Luczak, C. (2013). Long-term phenological shifts in raptor migration and climate. *Proceedings of the Royal Society B*, 280(1763). <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666790/>

8. Waller, E. K., Crimmins, T. M., Walker, J. J., Posthumus, E. E., & Weltzin, J. F. (2018). Differential changes in the onset of spring across US National Wildlife Refuges and North American migratory bird flyways. *PLoS ONE*, 13(9). <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5885960/>
9. Bellisario, B., Cardinale, M., Maggini, I., Fusani, L., & Carere, C. (2023). Co-migration fidelity at a stopover site increases over time in African–European migratory landbirds. *Scientific Reports*, 13, 9214. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269476/>
10. Telenský, T., Klvaòa, P., Jelínek, M., Cepák, J., & Reif, J. (2020). The influence of climate variability on demographic rates of avian Afro-palearctic migrants. *Scientific Reports*, 10(1). <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228260/>
11. Rushing, C. S., Royle, J. A., Ziolkowski, D. J., & Pardieck, K. L. (2020). Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change. *Proceedings of the National Academy of Sciences*, 117(23), 12897–12903. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584895/>
12. Jones, M. C., Dye, S. R., Fernandes, J. A., Frölicher, T. L., Pinnegar, J. K., Warren, R., & Cheung, W. W. L. (2013). Predicting the impact of climate change on threatened species in UK waters. *Biological Conservation*, 167, 79–89. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663315/>
13. Kerr, J. T. (2020). Racing against change: Understanding dispersal and persistence to improve species' conservation prospects. *Proceedings of the Royal Society B*, 287(1935). <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487921/>
14. Bellis, J. (1970). Conserving temperate montane birds under climate change: An assessment of potential management options. <https://core.ac.uk/download/146487338.pdf>
15. Schwerdtle, P. N., Stockemer, J., Bowen, K. J., Sauerborn, R., McMichael, C., & Danquah, I. (2020). A meta-synthesis of policy recommendations regarding human mobility in the context of climate change. *Environmental Research Letters*, 15(8). <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435576/>
16. Bókony, V., Barta, Z., & Végvári, Z. (2019). Changing migratory behaviors and climatic responsiveness in birds. *Journal of Avian Biology*, 50(7). <https://core.ac.uk/download/201117143.pdf>

### Cite this Article-

"E. A. Semolu", "Climate Change and Its Impact on Wildlife Migration Patterns", *Procedure International Journal of Science and Technology (PIJST)*, ISSN: 2584-2617 (Online), Volume:2, Issue:1, January 2025.

**Journal URL-** <https://www.pijst.com/>

**DOI-** <https://doi.org/10.62796/lijst>

**Published Date-** 03/01/2025