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ABSTRACT

In this paper, we investigate three traditional SSL techniques for event detection:
self-training, transductive support vector machines (TSVM), and graph-based label
spreading (LS). Load loss, generation loss, line trip, and bus fault are four important
event categories that may be classified using features extracted from synthetic PMU
data using modal analysis. By comparing various methods on the South Carolina 500-
Bus synthetic network, we find that graph-based LS is the most effective, demonstrating
the usefulness of data-driven SSL techniques for detecting events in large-scale power
systems. For real-time monitoring and analysis, data-driven methods are becoming
crucial due to the growing integration of Phasor Measurement Units (PMUs) and
developments in data science. Unfortunately, fully supervised learning methods aren’t
very effective because it’s hard to get enough labeled data, which is a problem because
some grid events are rare and unclear. Because of its ability to use both labelled and
unlabeled data to enhance performance, semi-supervised learning (SSL) becomes a
potent option.
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LINTRODUCTION

The ever-increasing complexity and interconnection of grid activities in contemporary
power systems bring about new possibilities while simultaneously posing formidable
obstacles to preserving the stability and dependability of the system. Sensing
technologies like Phasor Measurement Units (PMUs) and Supervisory Control and
Data Acquisition (SCADA) systems are rapidly expanding, resulting in the continuous
generation of massive amounts of data across expansive geographical regions. With
this data, we may be able to better understand the grid’s operational state and spot
abnormalities like faults, load shedding, equipment failures, cyber intrusions, and more.
Methods for event detection in the past have mostly used model-based techniques or
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completely supervised machine learning algorithms, both of which necessitate large,
labelled datasets. However, owing to factors such as the transient nature of power
systems, the difficulty of manually labeling events, and the rarity of certain events, it
is frequently unfeasible to acquire enough labeled event data for real-world applications.
The need to find new ways to make use of the mountain of unlabeled data hasled to the
development of data-driven semi-supervised methods for event recognition.

At the crossroads of supervised and unsupervised learning, semi-supervised learning
(SSL) trains predictive models using a small collection of labelled data alongside a big
pool of unlabeled data. When it comes to identifying events in power systems, SSL
offers a robust foundation for enhancing detection algorithms’ accuracy and
generalizability, all without depending on massive labeled datasets. This works
especially well in systems with a lot of nodes, since it would be impractical to label each
occurrence of an event type. Through propagating label information based on the
underlying structure in the data distribution, data-driven SSL methods learn
representations that can better distinguish between normal and abnormal
circumstances. Power system applications are seeing a surge in the use of techniques
such graph-based approaches, self-training, co-training, and consistency regularization,
which have been implemented in multiple domains.

Due of the spatial and temporal correlations present in grid data, SSL is more useful
in power systems. Rapid shifts in voltage, frequency, or current are common indicators
of events in power systems, and the effects of these shifts often trickle down through the
network. With data-driven SSL approaches, even with few labelled instances, the source
and nature of disturbances can be correctly identified by building models that can capture
these correlations. With graph-based SSL techniques, for instance, the grid can be
represented as a network with nodes standing for measurement locations or substations
and edges for electrical connectivity. By propagating labels from a small number of
known event locations to nearby nodes, the entire graph can be labeled. Both the
precision of event detection and its localization are improved by this, which is essential
for prompt operational reactions.

New developments in deep learning have enabled the creation of more complex semi-
supervised architectures including contrastive learning frameworks, generative
adversarial networks (GANSs), and semi-supervised autoencoders, in addition to graph-
based models. By training on massive amounts of unlabeled data, these techniques
1mprove the model’s discriminatory power against subtle event signatures. One example
is the use of semi-supervised autoencoders, which may be trained to mimic typical system
behavior and then used to detect abnormalities when they deviate from the norm. A
combination of anomaly detection and classification is achieved when a small number
of labelled events is used to train the model. This allows the model to learn to identify
known event kinds.

The promise of data-driven semi-supervised techniques isn’t without its challenges
when applied to real-world power systems. Problems with data quality and
heterogeneity, imbalance across classes, changing grid topologies, and noise are major
obstacles. In addition, operator confidence and acceptance depend on SSL models’
interpretability and explainability. Making judgments using machine learning models
requires transparency and justification since electricity systems are safety-critical
infrastructures. Therefore, there has been a recent uptick in efforts to create SSL models
that can be understood by humans and incorporate domain expertise to direct the
training process.

The incorporation of SSL techniques into preexisting operational workflows is another
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critical factor to think about. Accuracy, low latency, and resilience in the face of data
loss or connection delays are all essential for real-time event detection. This is why
researchers are looking at hybrid frameworks that use semi-supervised learning in
conjunction with more conventional rule-based systems or models based on physical
principles to guarantee dependability in a wide range of operational scenarios. Also,
these models can’t be implemented without scalable infrastructures that can handle

streaming data and adjust to changing system dynamics.
ILREVIEW OF LITERATURE

Yuan, Yuxuan et al., (2023) In order to build real-time event detection models for
transmission networks, this study explores the utilization of phasor measurement unit
(PMU) data in conjunction with deep learning approaches. There is a significant chance
to achieve decarbonization with the increasing penetration of distributed energy
resources, but there are also problems in systematic situational awareness. A large
number of state-of-the-art classifiers can tackle the power event identification problem
when there 1s enough manually recorded event labels and high-resolution PMU data.
Gathering extremely high-quality event labels, meanwhile, might get pricey in actual
grids. It is common for utilities to have a high volume of event records that lack detailed
information, sometimes known as unlabeled events. We provide a new approach based
on semi-supervised learning to fill this knowledge gap; it uses information from large
amounts of unlabeled events to train event classifiers that were previously trained
with a small number of labelled events. To rephrase, our method achieves the same
level of accuracy with a tiny amount of labeled data as existing data-driven methods,
but with far less effort. The performance degradation induced by a mismatch between
the training set and real applications in terms of class distribution is discussed and
addressed in this paper. In particular, this approach gradually increases the size of the
training dataset and probes the worth of unlabeled events using the pseudo-labeling
technique. In order to lessen the effects of a mismatch in class distribution and stop
performance from dropping, a safe learning mechanism is also created. Our model uses
a thorough evaluation approach to selectively incorporate unlabeled events during
model training, based on the proposed safe learning mechanism. In order to confirm
that the suggested strategy works, numerical investigations were conducted on a large
PMU dataset.

Sen, Debarshi et al., (2019) Guided ultrasonic waves (GUWSs) have been a prominent
approach for SHM of pipelines for more than 30 years. When compared to more
conventional vibration-based methods, GUWs excel at detecting cracks and corrosion
over a sufficient length of pipeline, which are examples of minor damages.
Unfortunately, model-based approaches are computationally too expensive due to the
system’s highly complicated physics. In these cases, data-driven methods grounded in
statistical learning algorithms work far better. We provide two data-driven methods
for pipe damage identification in this research, one using a supervised learning approach
and the other using a semi-supervised one. In addition to avoiding model-based
techniques, the suggested methods help save maintenance expenses by lowering the
number of sensors placed. Using an algorithm based on hierarchical clustering, the
semi-supervised learning method can identify damage. Within a multinomial logistic
regression framework, the damage localization is carried out by the supervised learning-
based method. The suggested algorithms are proven correct by collecting guided wave
responses from experimental pipes in a pitch-catch arrangement with inexpensive
piezoelectric transducers. Using a mix of two sensors, we show that our data-driven
methods can reliably identify and pinpoint cracks in two cast-iron pipes of varying
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lengths.

Zhou, Yuxun et al., (2017) Unconventional sources of energy and loads, like electric
vehicles, controlled loads, and distributed renewable resources, have been finding their
way into the power grid in growing numbers. In order to diagnose and control the system,
specialists in high-resolution monitoring and agile decision-support methods are needed
due to the induced dynamic and stochastic power flow. In order to detect events in power
distribution networks, this research delves into the use of data from micro-phasor
measurement units 1IPMUs). Hidden structure semi-supervised machine (HS3 M) is a
new data-driven event detection approach. To bridge the gap between supervised
learning, semi-supervised learning, and learning with hidden structures, HS3 M mixes
unlabeled and partly labeled data in a broad margin learning objective. It only requires
partial expert knowledge. A new global optimization approach, the parametric dual
optimization procedure, is defined by its equivalence to a concave programming in order
to optimize the non-convex learning objective. Lastly, the suggested approach is tested
on a real distribution feeder that has iPMUs installed. The outcome confirms that the
learning-based event detection framework is effective and might be used as a
fundamental technique for power system dependability and security.

Zhou, Yuxun et al., (2016) Recently, data-driven event detection has proven to be
advantageous in handling complex systems, particularly those exhibiting substantial
stochastic and dynamic behavior. This is made possible by the advent of data gathering
and processing technologies like sensor networks and machine learning. Traditional
approaches, on the other hand, rely on supervised learning frameworks and costly,
often impracticable, expert labeling throughout the learning phase. Using just partial
expert knowledge, we present a new data-driven event detection system called Hidden
Structure Semi-Supervised Machine (HS3M). To fill the void between supervised, semi-
supervised, and hidden structure learning, the central idea is to merge partially labeled
and unlabeled data in a large margin learning objective. The problem becomes non-
convex when more learning terms are added, which causes difficulties. We design a
new global optimization technique, Parametric Sub-Gradient Descent (PSGD), to
maximize the learning objective by demonstrating that the parameterized dual problem
has local explicit solutions and that the associated optimality is convex in hidden
variables. Power distribution network event detection is the target of the suggested
method, and the outcome validates the efficacy of HS3M and the novel global
optimization algorithm.

III.SEMI-SUPERVISED EVENT IDENTIFICATION: MODEL LEARNING AND
VALIDATION

Our three-step process for testing semi-supervised techniques is as follows: (i) passing
off some of the training set’s unlabeled samples as labelled ones, using a combination of
the two types of samples, D:‘:} ,(11) determining how well a classifier performs on the
validation set after training it with the mixed labeled and pseudo-labeled data, 5,; .

In Figure 1 we can see the big picture of the strategy that has been suggested. The
given model is semi-supervised F, and a classifier I, To begin, we take the labelled
samples from the training set’s 5Xth fold and 5Pth split. To find the model’s
hyperparameters, we do grid search using these labelled samples. I, and F, , denoted
as @, and g;. (Please be aware that these hyperparameters will vary depending on 5X
and 5”.) Afterwards, we make use of the event feature matrix and the matching label
matrix in the to provide the unlabeled samples pseudo-labels by means of F,. Making
use of the labelled and pseudo-labeled samples that were collected, , we then use model
F, “{SVMR, SVML, GB, DT, 5>NN} to label the occurrences in the validation dataset

Volume: 2, Issue: 1, January 2025 (4) www.pijst.com



Procedure International Journal of Science and Technology ISSN: 2584-2617 (Online)

D... The models that serve as F, in this process will be detailed in the sections that
follow.

1. Self-training: Using unlabeled data to train supervised classifiers has been
successful with self-training. In self-training, the model is trained repeatedly using
unlabeled data that have been pseudo-labeled based on the model’s predictions. We
train a model F, from the labeled data in the 5>NN model space, precisely for every
given base classifier. Then using the learned model, we predict the labels for each
unlabeled samples to obtain the augmented labeled and pseudo-labeled samples,
denoted as Algorithm 1 outlines the steps involved in this procedure. Note that the
parameter 5, in this algorithm specifies the number of unlabeled samples (among
thesamples) that will be assigned pseudo-labels in each iteration.

Algorithm 1 Self-Training (for a given k, g, s, and r).

I: Input: D

2: Output: DE:;

3: Initialize: [f:t]=[1: &y] = from sample f to sample t
4 XL‘_XL'?L HYL!XU hXU[f: t)

5: while t < n[:,) do

6 Pl H ‘7.‘_ - iL > Learning the model
T YU = Pl (iU] b pseudo-labeling

8 XL — [ii,i{;]r, ?I. — [?{,‘?E]T B> Augmentation
9 f‘-f+6y, f‘-f+5u

10: if t > ng):

11: t= H{J}

122 Xy« Xylf: g

13: end while

14: YM = ?I.

15: Return: ﬁ(;; = [XM,?M}

2. TSVM, or Transductive Support Vector Machine, is a variant of SVM that
overcomes the problem of sparse labeled data in classification applications. The
challenge of optimizing the TSVM is presented by

i ; 2
Lo C [Z it m'nief.ﬁzﬂ] + liwll

feEly JeI;y
Subject to-
yiwl o, —BY+n; = 1, =0, i Iy (5b)
waf—b+gj:_>t, £, =0, Je Iy (5c)
-—-(wa:.-—-b)—l—zj =1, =z, => 0, Je Ty (s5d)

Hyper-parameter

Pseudo Labeling
|, I‘"“;
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. % Evaluation on the
s" by . validation dataset
l—:.( sleulate RO ALC score i

Figure 1: Overview of the proposed semi-supervised pipeline.
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The direction of the decision boundary is represented by w “ !5Q, while the bias (or
intercept) term is denoted by 50 “!. It applies two restrictions (i.e., (5¢) and (5d)) to
every training dataset sample, treating them as if they were members of either class
and computing the misclassification error accordingly. The goal of the objective function
is to reduce the minimum of the misclassification errors (z) and maximize the margin
(w), while simultaneously minimizing the misclassification error of labeled samples (5).
For accurate classification, the TSVM may use both labelled and unlabeled samples.
The unlabeled samples are then given pseudo-labels. In order to keep things brief, we
direct readers to for more information.

LS, or Label Spreading: Models that are graph-based and semi-supervised (GSSL)
include label spreading (LS). Building a network with weighted connections that show
similarities and nodes that represent samples is the key to inferring labels for unlabeled
data. Think about a graph. 5:5@ = (V,, W, ) which is constructed over the combined
labeled and unlabeled training set.

Each sample, 5e , ., “ L, * 1,
resulting graph, we define the edge weights matrix as . Defining 57,
the 5V* row and 5W* column of W, , denoted as 5d.,.,,, can be obtained as 5d, =
exp(“57 . 25%) if 5V 7 5W, and 5d.,, = 0. According to this edge weight metric, the
weights assigned to adjacent pairs of samples will be higher. By using weighted edges,
which convey the idea of similarity, the LS method enables the transmission of labels
from labeled to unlabeled samples, capitalizing on the classical intuition that nearby
samples often share labels. We lay down the procedures of the LS method in Algorithm
2. Line 7 of Algorithm 2 captures the update rule, which updates the labels of both the
labeled and unlabeled samples. Specifically, for the labeled samples, this update
incorporates information from the neighbors (first term) while retaining the original
label (second term). The relative importance of neighbor-derived information and the

original label information from the sample is determined by the parameter 5.
IV.RESULTS AND DISCUSSION

First, we follow the steps in Section II to create eventful synthetic PMU data, and
then we test out several semi-supervised learning techniques. The 500-Bus System in
South Carolina was the basis for our simulations. For the time being, we let the system
run normally. 5a_, = 1 second and then we immediately apply a disturbance.

5@’

can be represented as a node in a graph. For the
— « 2
VEW 5e5V 5esw ’

Algorithm 2 Label spreading (for a given &, g.s. and r).

1 Input: G = (¥, W) « DY) = {Xur. Yor}
- Qutput: Dﬂ'

- Compute: D, = 3w, WieI, UL,
: Compute: £ = D"J"Vl?ﬂ?‘.",-D"'-"’2

- Initialize: |:YLr’=°] — [Y’-]

[T R S

Yul—o Yy
t: while Yol converges do B Based o some threshold
YU z
7- YL |I+l — a7, YL |J + “ —_ tt) YJ’.lr:ﬂ
Yerloss Yyl Yyl

8: r—r+1
9: end while
¢ YL[,}
I Yy —
S R
1 Returms DY = (X,,. ¥}

We then run the simulation for an additional 5a5° = 10 seconds, and record the
resulting eventful measurements at the PMU sampling rate of 30 samples/sec. The
5aclr for the BF events is 5 cycles (H” 0.083 seconds). We assume that 95 buses (which
are chosen randomly) of the Carolina 500-bus system are equipped with PMU devices
and extract features for each such bus from the 51_,, 51, and 59 channels. We thus
collect 5A = 300 samples after the start of an event for each channel. We use the modal
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analysis methodology as outlined in our recent prior work to extract features using
modal analysis. In total, we simulated 1827 events including 500 LL, 500 GL, 500 LT,
and 327 BF events.

We use the area under the curve (AUC) of the receiver operator characteristic (ROC)
to objectively assess and compare the performance of different semi-supervised learning
methods across different situations. The accuracy of categorization for various
discriminating thresholds may be characterized using this measure. One way to
measure a classifier’s performance is by looking at its ROC AUC value, which may be
anywhere from O to 1. Classification accuracy improves as the AUC gets closer to 1. By
measuring the ROC-AUC score for predicting event classes inside the hold-out fold, we
may determine how well a certain classifier F2 performs for a given set of parameters
5X, 5P, 5f, and 5S. The model trained from the augmented labeled and pseudo-labeled
data, derived using the pseudo-labeling model F'1, and is the basis of this assessment.

We compare different semi-supervised models by looking at their average, 5th, and
95th percentile area under the curve (AUC) scores, which are based on how well the
assigned pseudo-labels worked on the unlabeled samples. We also measure how well a
generalizable model predicted the labels of validation samples after using the assigned
pseudo-labels. For robustness, we primarily aim for the 5th percentile of the AUC values
as it gives a (almost) worst-case metric across various initial labeled and unlabeled
sample choices. In other words, it doesn’t matter whether the initial set of labeled and
unlabeled samples are unfavorable; a strategy that leads to accurate findings in the
5th percentile is likely to be the best option. We examine two separate methods within
this context to guarantee a fair comparison of different transductive and inductive semi-
supervised approaches:

e Approach 1 (Inductive semi-supervised setting):

F, ¢ {SVMR, SVML, GB, DT, 5>NNj} represents the base classifier utilized in self-
training for pseudo-labeling, and the same type of classifier will be used as F,.

Approach 2 (Transductive semi-supervised setting): F, ¢ {TSVM, LS}
represents a semi-supervised method used for pseudo-labeling, and F, ¢ {SVMR, SVML,
GB, 5>NN}.

As part of our assessment, we use 5[5> = 10 folds and 5[5D = 30 random divides of
the training data into subsets with labels and those without labels. Using the labelled
training data inside each fold, we hyperparameter tune the models, as mentioned in
Sec. IV. You may find the values of the model’s hyperparameters and other simulation
parameters in Tables 1 and 2, respectively. The 5 value that was acquired from the
hyper parameter adjustment of the SVMR model is used for the LLS model. Various
classifiers’ comparative performance is shown in Figure 2 across different semi-
supervised models (self-training, TSVM, and LS). These models include SVML, SVMR,
5>NN, DT, and GB. The results show that compared to the results obtained by the self-
training and TSVM methods, the incorporation of more unlabeled samples and the use
of LS for pseudo-labeling provide better results. On top of that, the LS algorithm reliably
makes all classifiers better. Each semi-supervised model’s performance is further detailed
in the sections that follow.

Approach 1- Inductive semi-supervised setting

Here order to forecast the labels of validation samples, the simulation results for the
5th percentile of the AUC scores of the SVML, SVMR, 5>NN, DT, and GB classifiers
are shown here.

Table 1: Parameters used in semi-supervised event identification
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Parameter Description Value

np Total no. of samples 1827

Ny No. of folds 10

nr No. of training samples 1644

ny No. of validation samples 183

"o No. of random splits of training samples 20

into labeled and unlabeled

(B in> Bnax) Class balance range in the (0.2, 0.8)

labeled samples

n, No. of labeled samples 24

ny No. of Unlabeled samples 1620

Sy No. of unlabeled samples in each step 100

s Total No. of steps 18

g No. of random selection of n'® samples at cach step U 10

Table 2: Values used for hyperparameter tuning of the models in semi-supervised
event identification

Model Hyperparameter Values
KNN No. of neighbors in KNN 2,4,6,8, 10
SVML Regularization parameter logspace(1073, 102, 10)+
SVMR y in RBF kernel logspace(103, 102, 10)
Regularization parameter logspace(1073, 102, 10)
DT Maximum depth 3,5,7
GB No. of estimators (boosting stages) 50, 100, 150, 200
Maximum depth 3,5,7

In Figure 2, it is evident that the self-training approach performs poorly when
employing a small number of labeled samples with SVMR, SMVL, and 5>NN base
classifiers. Additionally, event identification accuracy is not guaranteed to increase
when GB and DT are used as basis classifiers. The difference between the original
selection of labeled samples and the pseudo-labels is the primary cause of this.
Accumulating mistakes is a possible outcome of training using biased and untrustworthy
pseudo-labels. Essentially, this pseudo-label bias becomes worse for classes with worse
behavior, such when the distribution of labeled examples doesn’t match the distribution
of unlabeled data, and it becomes worse as self-training goes on.

There is a striking sensitivity to the distribution of labelled and unlabeled data in
self-training that uses SVML or SVMR as classifiers. These methods have difficulty
producing reliable pseudo-label assignments because of the restriction of using a small
number of labeled samples. Nevertheless, when we increase the amount of unlabeled
data, self-training using 5>NN as the basic classifier still performs worse than SVML
and SVMR examples. It is clear that self-training with DT and GB basis classifiers does
not improve their performance with increasing the amount of unlabeled examples, even
if these base classifiers show more robust performance than other kinds.

Approach 2- Transductive semi-supervised setting

As shown in Figure 3, the second technique’s simulation results use TSVM as the
semi-supervised method for pseudo-labeling. The particulars of the dataset and the
method’s sensitivity to the distribution of labelled and unlabeled samples may explain
TSVM’s poor performance. It is possible that the TSVM will have difficulty correctly
capturing the distribution if the samples are imbalanced or show complicated patterns.
Consequently, it may provide false pseudo-labels. Moreover, it is clear that the TSVM
algorithm’s integration of pseudo-labels is very sensitive, even though it improves the
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overall performance of SVML and SVMR compared to the same models using pseudo-
labels from the self-training algorithm that incorporates SVMR and SVML. Because of
this sensitivity, the accuracy of assigned pseudo-labels is still very dependent on the
original distribution of labeled and unlabeled samples, which is especially noticeable
when looking at the 5% AUC scores. This issue is also shown in the declining efficiency
of the 5>NN, GB, and DT classifiers, which, shockingly, declines even more than when
they are used as base classifiers in the self-training system.

Self-training

1.0
—— (SVML,SVML)
—— (SVMR,SVMR}
— (KNNLKNN)
091 — (DT.DT)
® — (GB.GB)
s
2 o8
S
=
s
L=
E 0.7
-
2
0.6
[
0.5 \ A ) ) L L | Az : L
200 400 600 800 1000 1200 1400 1600

Number of mixed (labeled + unlabeled) samoles

Figure 2: The 5th percentile of AUC scores for different classifiers using pseudo-labels obtained

Transductive support vector machines (TSVM)

1.0
— (TSVM,SVML)
— (TSVM,SVMR)
= (TSWVM.KNMN)
0.9 — (TSVM.DT)
e — (TSVM,.GE}
=
5
= 0.8
-
=
Fal
S o7
-
g
0.6
0.5 o

200 400 600 800 1000 1200 1400 1600
Number of mixed (labeled + unlabeled) samples

Figure 3: The 5th percentile of AUC scores for different classifiers using pseudo-labels obtained
from TSVM,

Label Spreading (LS)

1e

ROC ALIC (5th percentile}

(LS, SWML)
(LS, SVMR}
(LS, KNM)
LS, DT)
LS, GB)

ne

T

“no0 er.f Bon pll e 1200 1400 1ao0
Number of mixed (labeled + unlabeled) samples

Figure 4: The 5th percentile of AUC scores for different classifiers using pseudo-labels obtained
from LS.
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Figure 5: The 5th percentile of AUC scores for different classifiers using pseudo-labels obtained
from Comparison between (GB, GB) and (LS, 5>NN) in terms of average, 5 th, and 95th percentile of
AUC scores.

Figure 4 shows that even when compared to the self-training and TSVM methods,
using the augmented labeled and pseudo-labeled data from LS greatly improves the
event recognition performance. In addition, as the amount of unlabeled samples
increases, the event identification job performs better. This is important since labeled
eventful PMU data is often sparse in real-world scenarios. The LS technique outperforms
self-training and TSVM in comparison because it uses labeled and unlabeled samples
alike when assigning pseudo-labels, taking use of both types of data. Although the
average performance remains relatively same, we see that LS enhances the 5th
percentile line with additional unlabeled examples for some classifiers (namely GB and
DT). However, as seen in Figure 5, the 5> classifier exhibits an improvement in the
average, bth, and 95th percentile lines as the number of unlabeled data increases. It
seems that LS with 5~ is the top classifier overall.

V. CONCLUSION

Finally, event detection in large-scale power systems is heading in a revolutionary
new path thanks to data-driven semi-supervised learning techniques. The lack of tagged
data is a major obstacle to power system monitoring, but these technologies provide a
convincing remedy. Even when minimal supervision is present, semi-supervised models
are able to identify and categorize events more accurately and robustly by making
good use of large volumes of unlabeled operational data. This is why they are so useful
for finding new or unusual incidents that aren’t in the historical records. In addition,
for better event localization and characterisation, semi-supervised methods can grasp
the time- and space-dependent nature of power grid data. Because of their adaptability,
they may be used in conjunction with current sensor networks and modified to fit
changing grid designs. Unfortunately, these methods won’t work in the real world until
we fix the problems with interpretability, data quality, and model flexibility. The
significance of smart, scalable, and data-efficient solutions is on the increase due to the
ever-changing energy environment caused by renewables, dispersed resources, and
cyber-physical threats. An important component of smart and resilient power system
operations of the future will be semi-supervised learning, which is backed by
developments in machine learning and the integration of domain knowledge.
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