

Procedure International Journal of Science and Technology

(International Open Access, Peer-reviewed & Refereed Journal)

(Multidisciplinary, Monthly, Multilanguage)

ISSN : 2584-2617 (Online)

Volume- 2, Issue- 2, February 2025

Website- www.pijst.com

DOI- <https://doi.org/10.62796/ pijst.2025>

Fusion Energy and Tokamak Reactors

Dr. M.Z. Demir

Phy. Deptt., Ankara University, Ankara, Turkey

Abstract

Fusion energy represents a transformative pathway for sustainable electricity generation, offering high energy density, abundant fuel resources, and minimal environmental impact. Unlike nuclear fission, fusion joins light nuclei—primarily deuterium and tritium—under extreme temperatures and pressures to release vast amounts of energy. Tokamak reactors, designed as toroidal chambers with magnetic coils, have emerged as the leading approach for plasma confinement. Their ability to maintain plasma stability through combined toroidal and poloidal magnetic fields makes them central to ongoing fusion research. Historically, advances in plasma physics, magnetic confinement, and heating techniques such as neutral beam injection, ohmic heating, and radio-frequency methods have propelled the field. Presently, large-scale projects like ITER in France, SPARC in the USA, and K-STAR in South Korea demonstrate global collaboration in addressing challenges of plasma instabilities, energy loss, and economic viability. Key issues include achieving ignition, breeding tritium sustainably, mitigating energy losses, and ensuring radiation safety. Despite delays, technological innovations in superconducting magnets, real-time control, and disruption mitigation have renewed optimism. Fusion's potential environmental benefits—low carbon emissions and manageable radioactive waste—position it as a superior alternative to fossil fuels and fission. Public perception, regulatory frameworks, and international cooperation remain crucial for its realization. Ultimately, fusion energy promises a nearly inexhaustible, safe, and clean energy future, though its commercial deployment requires overcoming significant technical and socio-economic hurdles.

Keywords: Fusion Energy, Tokamak Reactors, Plasma Physics, Magnetic Confinement, ITER, SPARC, K-STAR, Deuterium-Tritium Fuel, Nuclear Safety, Sustainable Energy.

Introduction to Fusion Energy

Nuclear fusion, the process that powers stars, has been pursued for decades as an energy source with enormous potential benefits. Unlike other energy sources, fusion combines light species into heavier nuclei to release useful heat, rather than splitting heavy atoms. Fusion cannot be “mined” out of the ground like a finite fuel such as coal or depleted uranium; rather, the fuels must be produced by a power plant, with energy

used from the plant also recycled in the process—similar to farming. Excellent carbon-footprint analyses show that fusion compares favorably even with renewable energy sources on a life-cycle basis. The safeguards and security challenges associated with nuclear radiation have been well defined, and waste products can be sequestered indefinitely for a few hundred thousand dollars per year.

The name tokamak originates from the Russian words for toroidal chamber with magnetic coils, and their design is that of a donut surrounded by a group of magnetic coils that produce a strong magnetic field of 5 to 6 Tesla (100,000–120,000 times the Earth's magnetic field). This magnetic field confines the hot, charged molecules of the fusion fuel, which circulates inside the donut in such a way as to produce an additional magnetic field along the toroidal path. Deuterium and tritium, naturally occurring heavy isotopes of hydrogen, serve as the primary fuels. The optimum plasma temperature for producing fusion is approximately 13.6 keV (1.35×10^8 K). Several projects currently demonstrate the feasibility of tokamak reactors, including ITER in France, SPARC by Commonwealth Fusion Systems in partnership with MIT, and K-STAR in South Korea, and other confinement concepts.

History of Fusion Research

The attraction of nuclear fusion as an energy source was evident before the advent of the fission bomb. Based on the fact that the fusing of light nuclei around mass 60 releases energy, the idea of replicating the process on Earth to generate electricity was already being considered. Various devices were proposed for the purpose, but the tokamak emerged from the series of large, toroidal experiments constructed in the 1950s and 1960s (Shi, 2013). In the 1970s, two large facilities, TFTR and JET, joined those operating in the USSR and Japan for research aimed at generating fusion energy (Song et al., 2023).

Fundamentals of Plasma Physics

The term plasma—borrowed from Greek—means “to mold” or “to shape” and was introduced by Irving Langmuir in the early 1920s to describe ionized gases “because it behaves as though it contains a continuous distribution of ions and electrons.” Plasma is unique relative to other states of matter. The densities and temperatures can vary widely—from the cold, low-density plasma in neon lights to the ultra-hot plasma in the centre of stars. Furthermore, it is much easier to alter any of the many other plasma properties (many different physical properties of plasma can be summarized in Table 2). The plasma state plays a critical role in many fields of human development—industry, medicine, and nuclear fusion research.

In the fourth state of matter, the atoms have ionized to form a plasma due to the high temperature. All reaction products remain in plasma and by confining the charged plasma particles, the released fusion power, produced by the reaction, can be used to generate electricity (Bretscher, 2009). The Tokamak is one type of magnetic confinement device that relies on electromagnetic coils to create a magnetic field to prevent the hot plasma from touching the wall of the reaction chamber. Since charged particles tend to follow magnetic field lines, the design twists the magnetic field into a doughnut shape. This design is referred to as a torus. The design of a Tokamak was first introduced by a Russian physicist in the 1960s and the concept has since become widely used around the world, as is evident from the projects listed.

The plasma within the vacuum vessel is heated to temperatures over 100 million degrees Celsius, 7 times hotter than the Sun. At this temperature, deuterium and tritium fuse to form helium and a free neutron, releasing energy in the process. The heat is then removed from the tokamak by the first wall and blanket and used to generate

electricity in steam power turbines. Heating the plasma to this temperature requires three primary techniques—Neutral Beam Injection (NBI), High-Frequency Radio Waves, and Ohmic or Resistive Heating.

Plasma is classified as an ionized gas composed of charged particles, such as electrons and ions, in addition to neutral particles. For fuel to fuse, it must be heated to extreme temperatures—tens of millions of degrees—so that the atomic nuclei move fast enough to overcome the Coulomb barrier, when electrostatic forces repel protons in the nuclei. That is why plasma in a tokamak reactor reaches temperatures comparable to those on the Sun. Atoms in plasma are not bound to each other and plasma behaves differently from gases.

Magnetic confinement is fundamental to current fusion energy designs capable of producing burning plasmas. Strong magnetic fields confine the plasma, preventing it from touching—and damaging—the walls of a reactor. A magnetic field coils around the short axis of a doughnut-shaped vacuum vessel, providing an inward force on the hot plasma that counteracts the outward force from its pressure. Magnetic field lines must wrap completely around such a device, since plasma moves freely along field lines; the magnetic topology must provide continuous confinement in both the toroidal and poloidal directions. Because the plasma also slowly diffuses across magnetic field lines, attempts to develop an effective fusion reactor focus strongly on reducing cross-field transport and plasma instabilities (Bort-Soldevila et al., 2022).

Tokamak Design and Operation

The Tokamak is a toroidal device for magnetic plasma confinement (Wilson, 2019). Since the late 1950s, Tokamaks have dominated fusion energy research. The term ‘Tokamak’ is a Russian acronym for “toroidal chamber with magnetic coils.” Plasma current generates a poloidal field that, combined with an externally imposed toroidal field, yields a twisted, helical magnetic topology. Horizontal plasma position and cross-section shape are controlled by poloidal field coils, whereas plasma current and current profile are established and maintained by ramped ohmic heating and additional non-inductive methods. Plasma temperature and density are maintained through neutral beam and radiofrequency heating and fueling. Fuel mixture ratios and impurity concentrations influence the green-beam emission spectrum, helping to provide an estimate of plasma composition, edge density, and temperature. The concept effectively confines high-temperature, high-density plasma for periods that, at times, significantly exceed energy-independent transport times (Shi, 2013).

Basic Tokamak Structure

Tokamak fusion reactors employ magnetic fields to confine plasma in a toroidal chamber (Shi, 2013). The name tokamak is a transliteration of Russian words meaning toroidal chamber with magnetic coils. In a typical tokamak, a vacuum vessel with a major radius of several meters and a minor radius on the order of one meter encloses the plasma. A purely toroidal magnetic field created by coils surrounding the vacuum vessel is insufficient because of particle drifts that cause inadequate confinement (Wilson, 2019). To improve confinement, a poloidal field is added by driving a current through the plasma; this current also contributes to Ohmic heating. Poloidal field coils, often located near the torus axis, shape the plasma cross section. Figure 4.1 depicts a typical tokamak geometry.

Operational Parameters

In Tokamak devices, the plasma consists of a deuterium-tritium (D-T) mixture characterized by an ion density of approximately $8 \times 10^{19} \text{ m}^{-3}$, an electron temperature of about 14 keV, and an effective ion charge (Z_{eff}) near 2. Upon reaching

a volume-average density of $5 \times 10^{20} \text{ m}^{-3}$, the plasma undergoes a transition to the improved constrained plasma regime known as Super I-mode, sustained via neutral beam injection (NBI) heating. The prescribed D-T mixture implies a fusion power density of roughly 2.8 MW/m³. Optimal operational conditions correspond to a neutral beam injection power of 20 MW; under these parameters, the global energy confinement time achieves a multi-second (MS) regime, meeting critical confinement requirements (Song et al., 2023).

The magnetic confinement system employs an applied magnetic field directing the motion of plasma-charged particles along field lines in helical trajectories. The Lorentz force confines particle mobility perpendicular to the field but does not impose restrictions parallel to it. The resulting helical magnetic field, therefore, confines the plasma within the toroidal vessel and establishes a magnetic equilibrium (Daniel Boyer, 2014). The plasma current, predominantly sustained inductively by the ohmic heating coil, contributes to plasma heating and generates the poloidal magnetic field essential for confinement. Additional heating and auxiliary current drive are facilitated by injection of high-energy neutral particles and electromagnetic waves. Present-day Tokamaks rely heavily on transformer action to induce the plasma current, which confines operation to short pulses rather than steady state, with discharge lengths spanning seconds to minutes. Operational stability necessitates meticulous control of fueling, heating, and magnetic field parameters.

Key Components of Tokamak Reactors

Tokamak reactors employ a combination of toroidal and poloidal magnetic fields to achieve plasma confinement at thermonuclear temperatures. The toroidal magnetic field arises from current-carrying coils surrounding the plasma chamber (Wilson, 2019). Because the toroidal component alone cannot stabilize the plasma due to charged particle drifts, a poloidal field — generated by a current that flows directly through the plasma — is added to counteract these drifts. The combined field geometry results in a rotational transform that guides charged particles along helical field lines, effectively confining the plasma. Maintaining the optimal shape of the plasma cross section is a critical factor influencing performance, and this shape is established with the assistance of poloidal field coils.

The magnetic coil system is paired with a vacuum vessel and auxiliary equipment that provide a clean, stable environment for the plasma. A vacuum pumping system removes gas contaminants and allows precise control over the residual pressure within the vessel. A complex vacuum pumping system removes gas contaminants and permits precise control of the residual pressure in the vessel for particle balance and radiation shielding (Shi, 2013). Li and Ba coatings deposited on the vessel walls reduce recycling of hydrogen isotopes and the influx of impurities into the plasma. Heating systems are required to bring the plasma to ignition temperature; radio-frequency antennas deliver up to 20 MW of power to drive the plasma current, and neutral beam injectors add 20 MW of direct heating and 15 MW of momentum input. A suite of microwave, radio-frequency, and neutral beam diagnostics supplements the main equipment to characterize plasma conditions; a sophisticated feedback control system manages all aspects of the vacuum, magnetic, and heating equipment from outside the plasma vessel (Song et al., 2023).

(i) Magnetic Coils

Magnetic field design is fundamental for the construction of a tokamak reactor. The confinement of plasma particles requires a very homogeneous field in a large region, without even small drifts of the magnetic axis, and the possibility to freely modulate

the strength and shape. Any correction can be important because it might spoil the plasma configuration. The configuration of a magnetic field capable of keeping the plasma confined is toroidal and produced by three sets of magnetic coils (Shi, 2013). With a toroidal field alone, the electrons and ions in the plasma follow helical trajectories along the field lines, but their drift velocities become unbalanced and the particles quickly reach the vessel walls. In order to counteract this effect, a poloidal field is introduced to twist the field lines helically and cancel the drifts. This poloidal field is generated by the plasma current driven by a transformer situated in the centre bore of the structure. Therefore, the set of magnetic coils includes the toroidal field coils that produce a strong field with spatial periodicity, poloidal-field coils which modulate the magnetic surfaces and control the plasma position, and central solenoid as the primary of the transformer that drives the plasma currents (Bort-Soldevila et al., 2024).

(ii) Vacuum Systems

The vacuum system removes air and other impurities from the reactor vessel until the specified base pressure is reached. Typical operation requires a base pressure in the range of 10^{-7} torr in vessels containing volumes of a few thousand m³. To achieve this vacuum a complex combination of roots blowers and turbomolecular pumps is used to back a large array of cryopumps. Each system must have the capacity to pump a particle load of more than 1020 particles per second. While the main gas species processed by the vacuum system is hydrogen, it must also be able to handle the range of impurities produced by plasma–material interactions including helium, methane, carbon monoxide, water, and nitrogen. Leakage of these gases tends to raise the base pressure of the machine and produces a significant impurity contamination problem. To mitigate this problem, cryosorption pumps must be used; any cryopumps based on direct cryocondensation are unable to provide the base pressures required in the presence of oxygen and nitrogen, because these gases build up on the cryocondensate aid layer, thereby destroying pump performance (Shi, 2013).

(iii) Heating Systems

Various heating techniques have been advanced and integrated into nearly all contemporary long-pulse tokamaks, facilitating the attainment of high plasma temperatures. Internal inductive heating derives from the plasma current driven in the noninductive current scenario; while the ohmic-heating technique is the basic method for heating currently focused on internal inductive, the fact that its effectiveness diminishes at higher plasma temperatures has motivated the development of methods supplementary to ohmic distinction. One such technique is neutral beam injection (NBI), employing accelerating and neutralizing beams with a particle projection between 50 and 300 keV. These neutral particles are capable of penetrating far into the plasma interior, where they transfer their energy to the plasma, thus raising its temperature. Electron cyclotron resonance heating (ECRH) utilizes low-field resonant absorption to enhance heat profiles near the plasma periphery. (Song et al., 2023)

Challenges in Achieving Fusion

Plasma temperatures above 100 million °C are sufficient to overcome the Coulomb barrier and initiate fusion reactions. Overcoming this barrier is essential for a sustained fusion process. At such temperatures, plasma confinement becomes critical; preventing contact with vessel walls necessitates magnetic confinement, as contact would lead to cooling and damage. Magnetic-confinement fusion (MCF) has become a major research avenue because the confinement is non-contact and disruption mechanisms can be controlled. The most widely used magnetic-configuration concept is the Tokamak. These devices feature a toroidal vacuum chamber, magnetic coils that produce a twisting

magnetic field, and a suite of heating mechanisms. However, the operational space for sustained, high-performance discharges is constrained by plasma instabilities and transport phenomena that can precipitate energy losses through radiation and convection.

(i) Plasma Instabilities

Plasma instabilities often restrict Tokamak performance to small fractions of the ideal operating regime. Disruptions result in the loss of hot plasma under breakdown conditions and can seriously damage the device through large electromagnetic forces and thermal fluxes. Micro-instabilities generate turbulence and limit plasma confinement and the plasma density below the Greenwald limit, reducing the achievable fusion power (Wilson, 2019). Prominent among such instabilities are Edge Localized Modes (ELMs), which often produce intense fluxes to plasma facing components. Future devices would be equipped with disruption mitigation techniques, e.g., massive gas injection, which would be used when prediction schemes foresee an imminent disruption. Several advanced plasma diagnostics and analysis approaches have been developed for disruption prediction, based on measurements of plasma parameters relevant to disruption and evaluation of the stability level of the plasma configuration. Disruption proper begins with a thermal quench, during which almost all the plasma's thermal energy is lost to the wall within milliseconds. In future devices like DEMO, the energy deposited on plasma-facing components could cause melting of even the most resistant materials. The plasma current then decays more slowly during the current quench, which can impose severe induced electromagnetic loads on the structure; for instance, in ITER, the forces on surrounding metallic components could exceed the weight of an Airbus A380 (Murari et al., 2024).

(iii) Energy Loss Mechanisms

Energy loss represents a major obstacle to performance in fusion reactors. Plasma instabilities, such as edge-localized modes (ELMs), can expel degrees of particles and energy that limit the maximum plasma density and temperature. Impurities released by plasma–wall interactions are another source of energy loss since these ions radiate strongly in the visible and ultraviolet range. Electron heat transport down the density gradient (drift-resistive-balloon turbulence) can increase the heating power required to reach a given temperature front. Around the separatrix, heat generates high particle fluxes that can also limit performance. Plasmas contain energy on the order of several gigajoules, making magnetic configuration highly sensitive to perturbations: any local loss of confinement can cause the plasma to touch a wall and cool the entire plasma volume (Kirk, 2015) ; (Post et al., 1995) ; (Sizyuk & Hassanein, 2022).

Future of Fusion Energy

Interest in fusion reactors has experienced a resurgence in recent years. Various projects have since been completed or will soon be completed, including ITER in France, SPARC in US/Massachusetts, and K-STAR in South Korea. The promise of fusion reactors is evident—if successfully demonstrated on a commercial scale, the reactors can supply abundant, economical, and secure sources of electricity, produce less waste than fission reactors, and draw only a vanishingly small fraction of its fuel from the Earth's crust. At present, however, it seems impossible to say when fusion reactors will be ready for commercial use. ITER is currently scheduled to complete its first plasma in late 2025—nearly 15 years behind its original schedule—and even at this point, fusion reactors remain the longest-term source of energy among all renewable alternatives.

Despite the challenges, breakthroughs that are currently being realized may change

the way the decades-long timeline to commercial fusion is perceived. For instance, fusion energy, when it finally arrives on the grid, will be more convenient than any other energy source: stable, centralised, and scalable. Fusion reactors can be targeted to either base load or peaking load, complementing existing coal- and solar-powered electricity generation systems. Fusion must also be economically competitive with other sources of energy: from green hydrogen to geothermal to advanced supercritical coal generators. With trillions of dollars of support still required for the development of commercially viable electrical power plants, the industry would do well to ponder the pathways that have led to commercialisation in other wholly new industries like vehicle electrification and cellular telephones.

(i) Technological Innovations

Numerous planned fusion devices aim to advance fusion research beyond the groundwork laid by JET. The International Thermonuclear Experimental Reactor (ITER), currently under construction in southern France, is intended to be the world's largest long-pulse Tokamak. Designed to demonstrate the scientific and technological feasibility of fusion energy, ITER will operate with a plasma volume of approximately 840m³ in pulse lengths of up to 900 s. Its objective is to produce a net fusion power, with planned fusion power H"500MW compared to H"50MW input power. The device utilizes superconducting magnets, necessitating vacuum and cryogenic systems for operation.

Another significant device is SPARC, planned for operation at MIT in the USA. Its purpose is to demonstrate net power production through plasma confinement, heat generation, and exhaust of a burning plasma in a compact form factor of approximately 1×2m. Building upon the K-STAR Tokamak in South Korea, SPARC employs high-temperature superconducting magnetic coils and seeks to produce around 50MW of fusion power with 25MW of input power. The proposed design calls for a plasma volume of approximately 20 m³, with pulse lengths between 10 and 20 s. Utilizing superconducting magnets entails the incorporation of both vacuum and cryogenic systems.

(ii) Economic Viability

Despite considerable progress by ITER and related Tokamak projects, the economic viability of fusion power remains unproven (E. G. Nicholas et al., 2021). The combined requirements for very high mass flow rates of T-3He, 1-10% system efficiency, and low thermal power intensities present a formidable challenge to any realistic fusion reactor design (Manheimer, 2024). While there are indications that affordable energy supply will eventually be achievable, the time frame for such developments remains uncertain and likely extends well beyond the 2040-2050 horizon envisioned for the commercial deployment of current Tokamak concepts (A. Schwartz et al., 2022).

Environmental Impact of Fusion Energy

Fusion could potentially achieve a very high energy return on investment (EROI), with the maximum constrained by the size of the required power plant. Any practically realizable fusion device is likely to produce nuclear waste requiring deep geological disposal, rendering hybrid reactors a more acceptable option. Fusion efforts—such as the Eurofusion roadmap—focus on large Tokamaks providing baseload electricity, prioritizing materials research to obviate permanent waste repositories and facilitate recycling. The ultimate goal is commercial electricity generation; direct heat supply is not mentioned. The UK's Spherical Tokamak for Energy Production (STEP) project will examine socio-economic and environmental issues in greater detail. Many private enterprises plan to demonstrate fusion energy production on accelerated timelines, employing designs similar to government-led programmes but aiming for smaller, more

cost-effective reactors by utilizing advanced superconducting magnet technology. Should these compact Tokamaks produce commercially competitive energy in time, they could displace fossil-fuel plants (E. G. Nicholas et al., 2021).

For the realization of thousand-second improved-confinement plasmas, continuous operation of fusion reactors requires superconducting magnets, long-pulse heating systems, cooled plasma-facing components, and real-time control. Steady-state and long-pulse operation with improved energy confinement is highly desirable for technological and economic reasons. Two key physics challenges are: finding high-confinement scenarios without edge-localized modes, and demonstrating plasma-scenario stationarity over durations up to thousands of seconds. Long-duration discharges enable comprehensive evaluation of the interactions between technology and physics, as well as the cumulative effects of weak physical phenomena over time (Song et al., 2023).

(i) Carbon Footprint

Fusion energy is an advanced energy source considered sustainable since it uses less fuel and produces less waste than other methods. The energy produced from fusion reactions has the potential to meet global needs if produced economically (E. Menard, 2019). Advancements in plasma physics raised hopes of harnessing fusion power in the 1970s and 1980s. Although commercial fusion energy remains unrealized, the development of the SPARC tokamak in the 2010s demonstrated the continued progress of fusion research. Worldwide electricity consumption reached 23 terawatts in 2012, with a 2.7% annual growth rate. Fossil fuels provide 80% of this demand, and their continued use increasing the atmospheric carbon dioxide rate (Kurt Kreuger, 2012). Carbon dioxide, a greenhouse gas, contributes to global warming and climate change. These concerns are the principal drivers behind the interest in alternative energy sources such as fusion.

(ii) Waste Management

The environmental impact of Tokamak fusion power plants is evaluated, with particular emphasis on the radioactive waste streams generated during reactor operation. Despite the use of radioactive fuels such as the DT mixture, such reactors cannot become runaway systems and thus do not require a highly reactive safety shutdown system. In addition, in the event of an accident the amount of recoverable energy is small because the plasma contains very little energy and the power supply can be shut off easily. As a result, the concepts have inherently favorable safety characteristics, which constitute a strong advantage relative to fission reactors. Plasma-facing components of existing machines, including divertor targets, main-chamber limiters, and vacuum vessel first walls, become highly radioactive upon prolonged irradiation by 14 MeV fusion neutrons. Reference spectra derived from the ITER model demonstrate that the DT neutron spectrum has high penetration and produces a significant amount of nuclear transmutant impurities, some of which have long half-lives of up to thousands of years (M. Stacey, 2005). Consequently, D-T machines will generate significant quantities of both fusion drive and plasma-facing component wastes, which will require safe disposal or transmutation to a less-radioactive form. Since the radioactive waste generated by long-pulse fusion devices will likely be of a different composition, it is essential to demonstrate that fusion waste can be treated using existing disposal or transmutation options. On the other hand, pure fusion differs from fission in that the fuel does not contain long-lived actinides such as plutonium, and secondary waste streams are also considerably reduced. Even with improvements on initial designs, fusion reactors will inevitably generate substantial amounts of waste and tritium, both of which need to be controlled in a safe manner during startup, normal operation, and

shutdown. As a rough indication, the amounts generated for neutron-producing DT reactors, steady-state fuel processing plants, and component replacements all scale roughly with the magnitude of the neutron wall loading, integrated over the time considered. A comprehensive evaluation of this issue will be essential before the long-term environmental impact and development of fusion reactors can be evaluated (M. Stacey et al., 2002).

Conclusion

Fusion energy offers the promise of a virtually inexhaustible, low-carbon source of electricity that works around the clock and generates no waste. The active fusion phase lasts for only a few seconds, during which the deuterium and the vanadium commission neutrons interact to generate the plasma. The deuterium reacts with the neutron during the fusion process to supply the necessary energy to maintain the reaction, while the vanadium absorbs the neutron and produces heat. The key components of a Tokamak reactor are the iron core, the toroidal field coils, the poloidal field coils, the vacuum vessel and the vacuum. The iron core guides the flux generated by the poloidal field coils to maintain a separate flux path, which reduces the total flux stretching required by the power supply.

Author's Declaration:

The views and contents expressed in this research article are solely those of the author(s). The publisher, editors, and reviewers shall not be held responsible for any errors, ethical misconduct, copyright infringement, defamation, or any legal consequences arising from the content. All legal and moral responsibilities lie solely with the author(s).

References:

1. Shi, W. (2013). Plasma shape and current density profile control in advanced tokamak operating scenarios [Doctoral dissertation, Lehigh University]. Lehigh Preserve. <https://core.ac.uk/download/pdf/228638843.pdf>
2. Song, Y., Zou, X., Gong, X., Becoulet, A., Buttery, R., Bonoli, P., Hoang, T., Maingi, R., Qian, J., Zhong, X., Liu, A., Li, E., Ding, R., Huang, J., Zang, Q., Liu, H., Wang, L., Zhang, L., Li, G., ... Li, J. (2023). Realization of thousand-second improved confinement plasma with Super I-mode in Tokamak EAST. *Nature Communications*, 14(1), 584. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821864/>
3. Bort-Soldevila, N., Cunill-Subiranas, J., & Sanchez, A. (2022). Complete and robust magnetic field confinement by superconductors in fusion magnets. *arXiv preprint arXiv:2212.03206*. <https://arxiv.org/pdf/2212.03206>
4. Wilson, H. (2019). The impact of plasma physics on the timescale to a tokamak fusion power plant. University of York. <https://core.ac.uk/download/217700986.pdf>
5. Boyer, M. D. (2014). Nonlinear burn condition and kinetic profile control in tokamak fusion reactors [Doctoral dissertation, Lehigh University]. Lehigh Preserve. <https://core.ac.uk/download/pdf/228636736.pdf>
6. Bort-Soldevila, N., Cunill-Subiranas, J., & Sanchez, A. (2024). Complete and robust magnetic field confinement by superconductors in fusion magnets. *Scientific Reports*, 14, 4373. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864317/>
7. Murari, A., Rossi, R., Craciunescu, T., Vega, J., & Gelfusa, M. (2024). A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors. *Scientific Reports*, 14, 12177. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10948913/>
8. Kirk, A. (2015). Nuclear fusion: Bringing a star down to Earth. *arXiv preprint arXiv:1503.08981*. <https://arxiv.org/pdf/1503.08981>
9. Post, D., Abdallah, J., Clark, R. E. H., & Putvinskaya, N. (1995). Calculations of energy losses due to atomic processes in tokamaks with applications to the ITER divertor.

arXiv preprint plasm-ph/9506004. <https://arxiv.org/pdf/plasm-ph/9506004.pdf>

10. Sizyuk, V., & Hassanein, A. (2022). New proposed ITER divertor design using carbon insert on tungsten to mitigate ELMs and secondary radiation effects on nearby components. *Scientific Reports*, 12, 4853. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933477/>
11. Creely, A. J., Greenwald, M. J., Ballinger, S., Brunner, D., Canik, J., Doody, J., Fülöp, T., Garnier, D. T., Granetz, R., Gray, T. K., Holland, C., Howard, N. T., Hughes, J. W., Irby, J. H., Izzo, V. A., Kramer, G. J., Kuang, A. Q., LaBombard, B., ... SPARC Team. (2020). Overview of the SPARC tokamak. *Journal of Plasma Physics*, 86(5), 865860502. <https://core.ac.uk/download/347173927.pdf>
12. Nicholas, T. E. G., Davis, P., Federici, F., Leland, J. E., Patel, B. S., Vincent, C., & Ward, S. H. (2021). Re-examining the role of nuclear fusion in a renewables-based energy mix. *arXiv preprint arXiv:2101.05727*. <https://arxiv.org/pdf/2101.05727.pdf>
13. Manheimer, W. (2024). Fusion: It is time to color outside the lines. *arXiv preprint arXiv:2401.16442*. <https://arxiv.org/pdf/2401.16442.pdf>
14. Schwartz, J. A., Ricks, W., Kolemen, E., & Jenkins, J. D. (2022). The value of fusion energy to a decarbonized United States electric grid. *arXiv preprint arXiv:2209.09373*. <https://arxiv.org/pdf/2209.09373.pdf>
15. Menard, J. E. (2019). Compact steady-state tokamak performance dependence on magnet and core physics limits. *Philosophical Transactions of the Royal Society A*, 377(2141), 20170440. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365855/>
16. Kreuger, L. K. (2012). Ion temperature measurements on the HL-2A tokamak using a retarding field analyser [Master's thesis, Lehigh University]. Lehigh Preserve. <https://core.ac.uk/download/226146568.pdf>
17. Stacey, W. M. (2005). Transmutation missions for fusion neutron sources. *Fusion Science and Technology*, 47(3), 1191–1196. <https://core.ac.uk/download/4680448.pdf>
18. Stacey, W. M., Mandrekas, J., Hoffman, E. A., Kessler, G. P., Kirby, C. M., Mauer, N., Noble, J. J., Stopp, D. M., & Ulevich, D. S. (2002). A fusion transmutation of waste reactor. *Fusion Science and Technology*, 41(3), 116–122. <https://core.ac.uk/download/4680394.pdf>
19. Kim, B. S., Hong, S. H., & Kim, K. (2022). Preliminary assessment of the safety factors in K-DEMO for fusion-compatible regulatory framework. *Scientific Reports*, 12, 7009. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117233/>
20. Romaniuk, S. R. (2014). Fusion 2050 – European and Polish perspective. *Acta Physica Polonica A*, 126(4), 968–973. <https://core.ac.uk/download/234040423.pdf>

Cite this Article-

"Dr. M.Z. Demir", "Fusion Energy and Tokamak Reactors", *Procedure International Journal of Science and Technology (PIJST)*, ISSN: 2584-2617 (Online), Volume:2, Issue:2, February 2025.

Journal URL- <https://www.pijst.com/>

DOI- <https://doi.org/10.62796/ pijst.2025>

Published Date- 05/02/2025