

Procedure International Journal of Science and Technology

(International Open Access, Peer-reviewed & Refereed Journal)

(Multidisciplinary, Monthly, Multilanguage)

ISSN : 2584-2617 (Online)

Volume- 2, Issue- 8, August 2025

Website- www.pijst.com

DOI- 10.62796/pijst

Fourier Transform: A Conceptual Understanding of Signal Analysis in Physics

Pratima Gurung

PhD (Physics), Pokhara University, Pokhara, Nepal

Abstract

The Fourier Transform (FT) stands as one of the most foundational tools in modern physics for analyzing signals, decomposing functions, and interpreting time-dependent phenomena. This research paper presents a conceptual exploration of the Fourier Transform with a focus on its role in signal analysis within the broader context of physics. Rather than emphasizing mathematical formalism, this study aims to provide an accessible understanding of how the Fourier Transform operates across multiple domains, including engineering, medicine, quantum mechanics, and audio processing. Beginning with a historical overview, the paper revisits the ground-breaking contributions of Joseph Fourier in the 19th century, where his insight into representing heat equations through trigonometric series laid the groundwork for contemporary signal theory. The study then moves to explore fundamental principles, highlighting how the transformation enables the conversion of time-domain functions into their frequency-domain counterparts, offering deep insights into the spectral composition of physical systems. A key emphasis of the paper is on real-life applications of Fourier Transform in various scientific and technological fields. The transform's use in medical imaging (such as MRI and CT scans), digital audio analysis, and structural engineering underscores its interdisciplinary significance. In the context of quantum mechanics, the FT serves as a bridge between position and momentum representations, revealing the underlying duality in wave functions. The paper also presents a comparative analysis of FT with other transform methods such as the Wavelet and Gabor transforms, discussing their respective advantages and limitations. Challenges related to sampling, resolution, and spectral leakages are briefly addressed, alongside recent advancements in discrete and fast Fourier Transform algorithms. By synthesizing theoretical insights with practical applications, this paper seeks to make Fourier analysis approachable for scholars from both scientific and non-scientific backgrounds. The aim is to inspire a deeper appreciation of how a single mathematical tool continues to shape our understanding of physical reality across disciplines.

Keywords: Fourier Transform, Signal Analysis, Frequency Domain, Quantum Mechanics, Interdisciplinary Applications, Conceptual Physics

Introduction

Fourier Transform is a technique to express a function as an integral of sine or cosine functions, used to analyze signals. The function is represented as a sum of sinusoids of different frequencies, breaking down a signal into constituent frequencies. This process reveals a complex signal's frequency constituent. Charles François de Cisternay Du Fay discovered two types of electrostatic charges, repelling and attracting charges, informing the phenomenon. Electricity can travel through solids, liquids, and gases, guided by three laws attributed to Du Fay. Reasons for studying Fourier Transform include characterization of signals, appropriate distance measure between signals, and designing filters based on spectral characteristics. A general formula (analytical solution or expression) is given by Quazi (2020). Fourier analysis examines the effects of adding sine and cosine functions. Fourier series of a periodic function are defined by sums of sine and cosine terms with specific coefficients, and the Fourier transform converts a function into a frequency domain representation, enabling analysis of signals. Functions on real, periodic, and discrete domains are considered, and the Gibbs phenomenon addressed. The Fourier series provides a mathematical means of expressing a wide range of functions and is fundamental to the analysis of vibrations, acoustics, signal processing, and communications. Understanding signals can be enhanced by two fundamental properties: the time-domain perspective provides information on when signals occur, while the frequency-domain perspective reveals how much of the signal lies within each given frequency band over a range of frequencies (Dixit, 1970). The Fourier Transform supplies the analytical method to convert from time to frequency domains and vice versa, in principle capable of extracting the original signal from the transformed function. Professor Nathan Lenssen of the University of British Columbia defines the Fourier transform as a mathematical tool to decompose raw audio signals into fundamental frequencies and pitches, subsequently transforming obtained pitches into octave-independent chroma—the Pitch Class Profile (PCP). The PCP facilitates chord fitting through a trained Hidden Markov Model, optimized by the expectation maximization algorithm, with timing alignment achieved via the Viterbi alignment algorithm. Fourier analysis is central to understanding the chroma structure of an audio file, revealing how functions can be represented in both time and frequency domains. Functions describing sound vibrations, such as those of string instruments, can be modeled and analyzed using Fourier transform techniques (Lenssen & Needell, 2014).

Historical Background

Fourier formulated the heat equation in 1807, introducing the revolutionary insight that any (physical) function can be represented by trigonometric series (Dixit, 1970). This result played a fundamental role in the development of mathematical physics and engineering, by providing the language for solving partial differential equations of boundary-value problems. In 1822, Fourier further developed a transform method applied to the solution of differential equations, marking the birth of the Fourier transform (FT). Fourier also laid the groundwork for his transform method in cosmology with his second memoir in 1827.

Fundamental Concepts of Fourier Transform

Fourier analysis examines the effects of combining sine and cosine functions. A periodic function can be represented by a Fourier series, which is an infinite sum of sine and cosine terms with specific coefficients. The Fourier transform extends this idea by converting a time-domain function into its frequency components, yielding a complex-valued function. Fourier analysis applies to functions defined on various

domains, such as real numbers, periods, and integers (Dixit, 1970). The Fourier transform decomposes signals into sinusoids, each characterized by a particular frequency, amplitude, and phase. Through Fourier analysis, a time function of period T is represented as an infinite series of sinusoids weighted by coefficients that determine the magnitude and phase of each frequency component. When the period becomes infinitely large, the discrete frequency spectrum transitions to a continuous one, and the transform integral emerges (Zhou & Vali Siadat, 2022).

Elementary solutions of Maxwell's equations appear as Fourier exponentials (basic plane waves) employed in the Fourier transform. This observation raises questions about the possibility of defining a time operator in electromagnetism and classical or quantum observables more generally. In classical electromagnetism, waves constitute signals in the strict sense (Pierre Gazeau & Habonimana, 2020). Because physical quantities reduce to time and frequency (or time and scale), signal analysis and the associated formalisms provide a natural framework for electromagnetic theory, as illustrated by the corresponding phase spaces. Section I gives a brief overview of basic methods in signal analysis: Fourier, Gabor, and Wavelet. Section II examines the relationship between signal analysis and quantum formalism, highlighting their common Hilbertian structure and the role of resolution of the identity. Quantization and semiclassical portraits, along with their probabilistic content and potential classical limits, are defined in terms of a chosen resolution of the identity. Section III implements quantization procedures based on projector-valued measures derived from Fourier or Dirac bases. These approaches correspond to the spectral decompositions of self-adjoint time and frequency operators but do not allow the quantization of arbitrary functions of time and frequency.

Applications in Signal Analysis

Fourier Transform overlap theory provides a flexible approach for signal analysis with geometric interpretation (Pierre Gazeau & Habonimana, 2020). It decomposes a physical signal into a discrete spectrum of frequency modes through the integral process of harmonic analysis, allowing extraction of spectrum, magnitude, or phase information of components (Dixit, 1970). The amplitude of coefficients provides filtering capability, while complex coefficients characterize phase offset, described by the $\sim^4 \hat{I} \square L \square \hat{Y} \square^4$ diagram of the original band-limited signal. Applications span experimental and environmental physics, particularly on quasi-periodic or stationary signals composed of discrete samples and continuous functions.

Real-Life Applications of Fourier Transform

Fourier transformations find widespread use across physics and beyond. Their presence is evident in engineering, (structural response to earthquake input), medicine, (magnetic resonance imaging (MRI)), and audio processing (Fourier analysis essential for audio processing) (Abd-Alameer Salih et al., 2014). Fourier transforms' ability to identify the constitutive frequencies of a signal enhances their utility in many of these fields. The derivatives of Fourier transforms, such as the discrete Fourier transform (DFT), also find wide application—DFT is commonly employed in digital signal processing (Lenssen & Needell, 2014). Numerous other variants exist, including the discrete-time Fourier transform, the Fourier series itself, and the many transforms usually collectively described as Fourier-related, including the short-time Fourier transform.

(i) Applications in Engineering

In signal analysis, a vast range of physical systems can be understood as processes in which a (generally complicated) function of time is created. This can be as simple as

the daylight radiant flux received by a photovoltaic cell, or as intricate as a chaotic oscillation of the price of a stock. Often, the observations that interest us are rather indirect and tenuous and the observed time series is a complex and obscure distortion of the underlying physical process. When the transform is used in this context, the frequently reoccurring patterns to look for are periodicities, resonances and other indications of cycles in the signal or in the source process. For signals without well-defined spectral features, Fourier analysis can still help to characterize correlations and spectral scaling properties.

The main advantage of the transform over the Fourier transform is therefore that it is localized in both time and frequency, just as a spectrogram is, albeit in a more sophisticated and therefore presumably more useful way. The fact that the tracking of the signal at both time and frequency simultaneously is limited by the uncertainty principle means that exploring the existing trade-offs and looking for optimal time-frequency distributions is a fruitful field of research. The basic explanation of why Fourier analysis can be difficult or even impossible can in fact be found in the uncertainty principle: if the data set is dramatically too small, the spectrum cannot be extracellular recorded in a reliable way. Different examples can be given depending on the situation. The most typical look into noisy data is spectroscopic: spectra, cross sections, intensities or phase shifts need to be fit carefully before a deconvolution of the signal can be carried out.

(ii) Applications in Medicine

The Fourier Transform plays a significant role in the medical field. It provides different methods to implement image-processing and signal-processing fields in medical imaging. Medical imaging techniques, such as X-ray and computed tomography scans, generate large amounts of data, and the Fourier Transform simplifies data processing. It conducts quantitative analysis of the imaging data, facilitating subsequent analysis. The Transform also assists in importing and filtering biomedical signals, including X-ray waves, electroencephalograms, and electrocardiographs. These applications illustrate the Fourier Transform's critical contribution to medical diagnostics and patient monitoring (Dixit, 1970).

(iii) Applications in Audio Processing

Digital applications of the Fourier transform utilize the discrete Fourier transform (DFT). The DFT of a vector f is defined as follows, for $k = 0, 1, \dots, N - 1$:

$$F_k = \sum_{n=0}^{N-1} f_n e^{-i2\pi nk/N}.$$

The inverse DFT is defined in a similar manner.

A sinusoidal function can be expressed as

$$x(t) = A \sin(2\pi f t + \phi),$$

where A is the amplitude, f is the radian frequency, and ϕ is the initial phase. Fourier transforms exploit the complex properties of sinusoids, utilizing Euler identities.

Comparative Analysis with Other Transform Techniques

Various fields analyze the spectral content of time-varying signals, including medicine, music, speech, seismic activity, vibrations, power grids, radar, and communications. Time-frequency transforms have been developed to describe the spectrum of non-stationary signals. Each transform exhibits particular properties regarding time resolution, frequency resolution, accuracy of spectral estimates, and the presence of cross-terms or other artefacts. The Short-Time Fourier Transform (STFT), Gabor transform, Wavelet transform, Stockwell (S) transform, and the Wigner-

Ville Distribution (WVD) with its smoothed pseudo variant (SPWVD) have been compared in terms of their resolutions and artefacts (Scholl, 2021). These methods have been applied to a variety of signals to illustrate their properties, advantages, and disadvantages, thereby assisting engineers in selecting the most suitable transform for specific applications. Fourier analysis studies the effects of adding sine and cosine functions to represent signals. The Fourier series of a periodic function is defined using coefficients calculated by integrals. The Fourier transform converts a function into a complex-valued function on discrete frequencies and forms the basis of various analysis techniques that decompose signals into frequency components (Dixit, 1970). The Fourier Transform constitutes a classical method for analyzing signals; however, it is applicable mainly to stationary and quasi-stationary signals and performs poorly with non-periodic, noisy, or non-stationary data. To address these limitations, Wavelet Transformation (WT) was introduced for frequency analysis of such signals. Wavelets can be implemented in continuous, discrete, or short-time forms and have been adopted across engineering, science, and technology to analyze complex signals. Wavelet theory and applications provide an alternative to Fourier-based methods, such as the short-time Fourier transform (Naji Shaker, 2017).

Fourier Transform in Quantum Mechanics

The unique merit of the Fourier Transform is found by its application in quantum mechanics (Pierre Gazeau & Habonimana, 2020). Measured signals in quantum mechanics become wave functions with probabilistic interpretations of localization in time and frequency. Expected values of operators, such as those representing time or frequency, can be interpreted as characteristic data for phenomena encoded in the signals. Considering signals as eigenstates of operators derived from integral quantization bridges classical signals and quantum states. This framework allows for exploring features of quantum formalism, such as entanglement and measurement, without the limitations imposed by the Planck constant. The transform provides a natural way to switch from the position representation of the quantum state to a momentum representation and thus play a fundamental role in wave mechanics and quantum physics. Quantum Fourier analysis broadens classical Fourier analysis by analyzing Fourier transforms in quantum symmetry contexts, representing a significant advancement in both mathematics and physics (Jaffe et al., 2020).

Challenges and Limitations of Fourier Transform

Fourier Transform serves as a fundamental mathematical procedure, encoding the translation of functions into alternative representations. Extensive investigations have led to its application across a variety of scientific fields. Notwithstanding its ubiquitous adoption, several conceptual and practical challenges arise in the deployment of Fourier Transform as a tool for interpreting physical signals and phenomena. The ensuing discourse proceeds to outline the key obstacles, admitting a relative paucity in comprehensive discourse on conceptual limitations. Owing to truncated sampling lengths in practical scenarios, the conventional approach involves relying upon Discrete Fourier Transform (DFT) for characterising the properties of an inherently continuous signal. Data acquisition invariably involves sampling restrictions either in space or time. The latter leads to spectral leakage caused by rectangular-window truncation of an otherwise continuous function, while the former results in a compromise between resolution and spectral range depending upon the image size (H. H. Goh, 2019). The Fourier description of a given function possesses only a limited frequency resolution, and it remains insensitive to the evolution of frequency components in time. This latter aspect constitutes a fundamental conceptual limitation in standard 'global' Fourier analysis

which prevents unambiguous characterisation of dynamical systems. A recent summary of practical concerns on resolution, sampling and windowing for Fourier transformation is available (Seeber & Ulrici, 2017). The ubiquitous Fast Fourier Transform algorithm for calculating the transform constitutes an intricate expression with complex computational dependencies that limit effective parallelisation. In addition, the transform output is voluminous, and frequently lacks insight, motivating the proliferation of alternative transformation strategies.

Recent Advances in Fourier Transform Techniques

Fourier Transform (FT) has been definitively established as a fundamental tool for signal analysis. Regardless of the domain in which the signal is stored, the transform has served as a valuable additional perspective on the nature of a physical system. Analyzing the spectral components of certain physical systems often enlarges the comprehension of the process whilst other signals make the investigation of the temporal behavior particularly appealing. In the end, both aspects correspond to the same information, the relation between them being of fundamental interest. The concept of FFT is surrounded by different variants of Fourier analysis, and yet no other procedure is able to propose a total different viewpoint on the signal dataset. Any particular application can be imagined and developed, including classical dispersion as well as energy bands of different structure and complexity.

Several of the alternative techniques are often developed in response to analytical needs, reflecting the requirements of the specific problem to be treated. Each of the alternative schemes frequently addresses aspects that are either problematic or even forbidden in the Fourier transform analysis. Nevertheless, every single approach reveals some analysable character that Fourier transform procedures are not able to deal with; the very concept of time-frequency representation is deeply associated with some of these alternatives. Standard Fourier procedures show some stubbornness in their inability to deal with multiresolution and multiscale notions. In a sense, the alternative techniques can be regarded as incomplete procedures that are well suited for specific questions but have yet to reveal the physical information that is presently displayed by Fourier analysis.

The discrete Fourier transform is one of the most widely used data processing tools, and the interest that it continues to generate in different disciplines is motivated by the persistent demand for experimentation on architectures and microprocessors. It is rarely an option to develop a set of specific devices exclusively dedicated to FFT computation. Instead, several recommendations and guidelines have been established, exploiting this tool where possible, letting it coexist with other algorithms, and gaining the best overall performance in efficient approximation, frequency analysis, or physical effects analysis. Concurrently, several developments have centered on the identification and characterization of inverse problems associated with discrete Fourier analysis (DFA). Although the vast majority of submitted manuscripts cannot be acknowledged, the community of users regularly receives a careful and detailed screening of contemporary developments, trends, and research strategies.

Future Directions in Research

Six decades have passed since Fourier's pioneering work, which has inspired much subsequent research and continues to stimulate progress in signal processing. Applications of the Fourier transform are extensively employed for analyzing signals in physics experiments, engineering structures, musical compositions, and biological phenomena, with examples including structural analysis, imaging diagnostics, and sound signal processing. In closed systems—such as quantum states—presented

formulations amount to changes of representation. In the context of wave-packet dynamics, for a spatially localized initial wave function in one dimension, the Fourier transform solutions rely on analysis and interpretation of the wave function in reciprocal space, interconnected with the theory of Fourier optics and other methodologies. Time-stretch transformations, or nonlinear Fourier transforms, prove useful for processing supercontinuum pulses generated in optical fibers.

Conclusion

The Fourier transform (FT) is an essential tool for the study of electromagnetism, quantum mechanics and signal processing. Fourier analysis offers powerful methods of decomposing a function into a combination of standard components and extending that notion, working with a set of basis functions to facilitate the study of complex phenomena. This decomposition is particularly useful since the standard components behave in a well-known manner as the phenomenon evolves, so their future contribution can be projected accurately. Furthermore, by studying the standard components of a phenomenon, insights may be gained into its causes. Fourier's theorem states that any periodic function or real-world signal can be obtained as a sum of sinusoids, and that is the property that allows terms to be changed to ensure convergence. The basis of Fourier analysis can be viewed as follows: An arbitrary function is expressed as a linear combination of a set of functions; the Fraunhofer diffraction pattern of a field distribution at an aperture is given by the Fourier transform of the field distribution; and a set of measured data can be approximated by a series expansion. The most direct scope of FT is to give an alternative representation of a signal in the frequency domain. The "Fourier-transformed" signal, or spectrum, has been exploited to calculate the lowest sampling frequency suitable to represent the signal correctly. When the signal is not periodic, in practice, it is important to isolate a finite portion, a segment, in order to apply the FT.

Author's Declaration:

The views and contents expressed in this research article are solely those of the author(s). The publisher, editors, and reviewers shall not be held responsible for any errors, ethical misconduct, copyright infringement, defamation, or any legal consequences arising from the content. All legal and moral responsibilities lie solely with the author(s).

References:

1. Dixit, A. (2008). Fundamental concepts on Fourier analysis (with exercises and applications) (Master's thesis). Kansas State University, Department of Mathematics. <https://krex.k-state.edu/handle/2097/875>
2. Lenssen, N., & Needell, D. (2014). An introduction to Fourier analysis with applications to music. *Journal of Humanistic Mathematics*, 4(1), 72–91. <https://doi.org/10.5642/jhummath.201401.05>
3. Zhou, K., & Siadat, M. V. (2022). Notes on harmonic analysis Part II: The Fourier Series [Preprint]. arXiv. <https://arxiv.org/pdf/2206.05105>
4. Gazeau, J. P., & Habonimana, C. (2020). Signal analysis and quantum formalism: Quantizations with no Planck constant [Preprint]. arXiv. <https://arxiv.org/pdf/2001.04916>
5. Salih, M. A.-A., Jabour, H. S., Mojed, Q. S., & Ibrahim, A. (2014). Theoretical study for the power distribution of the Fourier transform in the spatial frequency domain. *Advances in Physics Theories and Applications*, 29, 80–89. <https://www.iiste.org>
6. Scholl, S. (2021). Fourier, Gabor, Morlet or Wigner: Comparison of time-frequency transforms [Preprint]. arXiv. <https://arxiv.org/pdf/2101.06707>

7. Shaker, N. A. (2017). Representation of frequency and time information by using wavelets transform: The method and applications. International Journal of Sciences: Basic and Applied Research, 35(3), 139–148.
8. Jaffe, A., Jiang, C., Liu, Z., Ren, Y., & Wu, J. (2020). Quantum Fourier analysis. National Center for Biotechnology Information. <https://www.ncbi.nlm.nih.gov>
9. Goh, K. H. H. (2019). Continuous Fourier transform: A practical approach for truncated signals and suggestions for improvements in thermography [Preprint]. arXiv. <https://arxiv.org/pdf/1907.01286>
10. Seeber, R., & Ulrici, A. (2017). Analog and digital worlds: Part 2. Fourier analysis in signals and data treatment [PDF]. CORE. <https://core.ac.uk/download/153481979.pdf>
11. Vergara, S. (2008). On generic frequency decomposition. Part 1: Vectorial decomposition [Preprint]. arXiv. <https://arxiv.org/pdf/0804.3650>

Cite this Article-

"Pratima Gurung " "Fourier Transform: A Conceptual Understanding of Signal Analysis in Physics", Procedure International Journal of Science and Technology (PIJST), ISSN: 2584-2617 (Online), Volume:2, Issue:8, August 2025.

Journal URL- <https://www.pijst.com/>

DOI- 10.62796/ pijst

Published Date- 02/08/2025

