

Procedure International Journal of Science and Technology

(International Open Access, Peer-reviewed & Refereed Journal)

(Multidisciplinary, Monthly, Multilanguage)

ISSN : 2584-2617 (Online)

Volume- 1, Issue- 7, July 2024

Website- www.pijst.com

DOI- <https://doi.org/10.62796/pijst.2024v1i7003>

An Inventory Model with Fuzzy Valued Inventory Costs under Inflation Price and Time Dependent Demand

Mandeep Singh

Department of Mathematics, Shyamla Sarswati Mahavidyalaya, Shikarpur, Bulandshhar, U.P.

Dr. Ravendra Kumar (Corresponding Author)

Department of Mathematics, V R A L Govt Girls Degree College, Bareilly, 243006, U.P.

Gaurav Gupta

Department of Mathematics, Shyamla Sarswati Mahavidyalaya, Shikarpur, Bulandshhar, U.P.

Abstract- In this work, we have created a fuzzy inventory model for degrading goods that takes the system's impact of inflation into account and includes price and time-dependent demand. If there are any shortages, they are permitted and will be partially backlogged at a variable rate based on how long it takes for the next lot to arrive. The corresponding problem has been presented as an optimisation problem with constraints that is nonlinear; all of the cost parameters have been addressed with fuzzy values. To demonstrate the paradigm, a numerical example has been examined, and the key findings are highlighted. Ultimately, using these instances as a basis, sensitivity assessments were conducted by examining one parameter at a time while maintaining the same values for the other parameters.

Keywords- Inventory, deterioration, time dependent demand, partially backlogged shortage, inflation, fuzzy valued inventory costs

Introduction-

The majority of inventory models have been established under the premise that an item's life span is limitless while it is in storage, meaning that once an item is

in stock, it remains unmodified and completely useable for satisfying future demand, according to the literature currently available on inventory control systems. Due to the influence of deterioration in the preservation of regularly used physical items like wheat, rice or any other form of foodgrains, vegetables, fruits, medications, pharmaceuticals, etc., this assumption is not always accurate in real life situations. A portion of these products aren't in perfect condition to meet demand since they've been harmed, degraded, evaporated, or affected by other circumstances, among other things. Therefore, in the examination of the inventory system, the loss resulting from this natural phenomena (i.e., the deterioration effect) cannot be disregarded. The first inventory model for exponentially decaying inventory was created by Ghare and Schrader in 1963. Next This kind of variable deterioration model, which adheres to the two-parameter Weibull distribution, was proposed by Emmons in 1968. Several researchers, including Covert and Philip (1973), Giri et al. (2003), and Ghosh and Chaudhari (2004), expanded and enhanced these models. Conversely, Md. Anwar Hossen, Md. Abdul Hakim, S.S. Ahmed, and M. Sharif Uddin 22; Giri et al. (1999); Sana et al. (2004); and Chakrabarty et al. (1998) Inventory models for degrading objects with a one-parameter Weibull distributed deterioration were developed by Sana and Chaudhari (2004) and others.

The public's demand for an item can be altered in the current competitive market by marketing policies and conditions including price fluctuations and product advertising. People are motivated to buy more when an item is promoted and canvassed through sales agents and advertisements in well-known media like radio, newspapers, magazines, television, and movies. One of the deciding criteria when choosing an item for use is also its selling price. It is well known that whereas higher selling prices have the opposite impact, lower selling prices lead to an increase in demand.

Thus, it may be said that the requirement for an item is dependent upon its selling price, quantity of advertisements, and inventory that is on display in a showroom. Very few researchers studying OR and Practitioners investigated how price changes and advertisements affected the pace at which products were demanded. In addition to discussing the connection between pricing decisions and economic order quantities, Kotler (1971) integrated marketing policies into inventory decisions. In 1974, Ladany and Sternleib conducted research on how price variation affects sales and, in turn, EOQ. They did not, however, take the impact of advertising into account.

Inventory models combining the impacts of price fluctuations and advertisement on an item's demand rate were established by Subramanyam and Kumaraswamy (1971), Urban (1992), Goyal and Gunasekaran (1995), Abad (1996) and Luo (1998), Pal et al. (2007), and Bhunia and Shaikh (2011). In addition to the rate of degradation, inflation and the time value of money are two realistically significant elements that experts generally agree have a significant impact on the decisions made about inventory strategy. Misra (1979) and Buzacott (1975) presented inventory models that took inflation into account for all related expenditures.

Two years later, Bierman and Thomas (1977) created an EOQ model that included the time value of money and the impact of inflation. Misra (1979) created an inventory model based on the hypotheses of varying inflation rates for various related costs and steady demand. An EOQ model for products with stock dependent

consumption rate and exponential decay was created by Vrat and Padmanabhan in 1990. In 1991, Datta and Pal presented an inventory model that took time value of money and inflation into account, along with a linear demand rate and shortages. Wee and Law (1999, 2001) created inventory models that considered the time value of money for items that were deteriorating.

In addition to these, additional scholars who have made contributions to this field of study include Yang, Teng, and Chern (2001), Yang (2004, 2006), Jaggi, Aggarwal, and Goel (2006), Hsieh, Dye, and Ouyang (2008), Dey, Mondal, and Maiti (2008), Jaggi, Khanna, and Verma (2011), and others. Yang (2004) took into consideration two distinct scenarios and suggested a two warehouse inventory model with constant demand rate for degrading products under inflation. In the first instance, he made the assumption that there would be shortages at the end of an instantaneous order. The model starts with shortages in the second scenario and finishes with none. Yang (2006) expanded these models by using partial backlogging.

Taleizadeh et al. (2012) and Taleizadeh et al. (2013 a, b) developed single warehouse inventory models taking partial backlog into consideration. In a two-warehouse system, Jaggi, Khanna, and Verma (2011) have suggested an inventory model that takes inflation, a partial backlog rate, and a linear time-dependent demand rate for degrading items into account. In this research, we have built an inventory model for degrading items that takes into account the system's inflation effect and frequency-dependent demand for advertisements. If there are any shortages, they are permitted and will be partially backlogged at a variable rate based on how long it takes for the next lot to arrive. The related issue has been solved after being stated as a nonlinear constrained optimisation problem.

To demonstrate the paradigm, a numerical example has been examined, and the key findings are highlighted. Finally, using these instances as a basis, sensitivity analyses have been performed, one parameter at a time, while maintaining the same values for the other parameters. The impacts of the various factors on the initial stock level, shortage level, cycle length, and optimal profit have been investigated.

Assumptions and notations

The following assumptions and notations are used to develop the proposed model:

- (i) The entire shipment is delivered in a single batch.
- (ii) The system accounts for the effect of inflation.
- (iii) The demand rate $D(p,t)$ depends on time and is represented as $D(p,t)=a''bp+ct$, where $a, b, c > 0$, $a, b, c > 0$.
- (iv) Deteriorated units are neither repaired nor refunded.
- (v) The inventory system includes only one item and one stocking point, with an infinite planning horizon.
- (vi) Replenishments occur instantly, and the lead time is constant.
- (vii) The replenishment (ordering) cost is constant, and transportation costs for replenishing the item are not included.
- (viii) The inventory cost parameters have fuzzy values.

Notations:

$I(t)$	Inventory level at time t
S	Highest stock level at the beginning of stock-in period
R	Highest shortage level
θ	Deterioration rate ($0 < \theta < < 1$)
\tilde{C}_1	Fuzzy replenishment cost per order
δ	Backlogging parameter
\tilde{C}_p	Fuzzy purchasing cost per unit
Md. Abdul Hakim, S. S. Ahmed and M. Sharif Uddin	
P	Selling price per unit of item
$D(p,t)$	Time dependent demand
\tilde{C}_h	Fuzzy holding cost per unit per unit time
\tilde{C}_b	Fuzzy shortage cost per unit per unit time
\tilde{C}_{ls}	Fuzzy opportunity cost due to lost sale
t_2	Time at which the stock level reaches to zero
T	Time at which the highest shortage level reaches to the lowest point
r	Inflation rate

3. Inventory model with shortages

In this model, it is assumed that after fulfilling the backorder quantity, the on-hand inventory level is S at $t=0$ and it declines continuously up to the time $t= t_2$ when it reaches the zero level. The decline in inventory during the

closed time interval $0 \leq t \leq t_2$ occurs due to the customer's demand and deterioration of the item. After the time $t = t_2$, shortage occurs and it accumulates at the rate $[1 + \delta(T-t)]^{-1}$, ($\delta > 0$) up to the time $t = T$ when the next lot arrives. At time $t = T$, the maximum shortage level is R . This entire cycle then repeats itself after the cycle length T .

Let $I(t)$ be the instantaneous inventory level at any time $t \geq 0$. Then the inventory level $I(t)$ at any time t satisfies the differential equations as follows:

$$\frac{dI(t)}{dt} + \theta I(t) = -D(p, t), \quad 0 \leq t \leq t_1 \quad (1)$$

$$\frac{dI(t)}{dt} = \frac{-D(p, t)}{[1 + \delta(T-t)]}, \quad t_1 < t \leq T \quad (2)$$

with the boundary conditions

$$I(t) = S \text{ at } t=0, \quad I(t)=0 \text{ at } t=t_1 \quad (3)$$

$$\text{and } I(t) = -R \text{ at } t=T. \quad (4)$$

Also, $I(t)$ is continuous at $t=t_1$

Using the conditions (3) and (4), the solutions of the differential equations (1)-(2) are given by

$$I(t) = S - D(A, p)t \quad 0 \leq t \leq t_1$$

$$\frac{D(AP)}{\theta} \{e^{\theta(t_1-t)} - 1\} \quad t_1 \leq t \leq t_2$$

$$\frac{D(AP)}{\delta} \log |1 + 8(T-t)| - R, \quad t_2 < t \leq T$$

An Inventory Model with Price and Time Dependent Demand with Fuzzy Valued Inventory Costs Under Inflation

Using continuity condition we have

$$S = D(A, p)t_1 + \frac{D(AP)}{\theta} \{e^{\theta(t_2 - t_1)} - 1\} \quad (5)$$

From the continuity condition, we have

$$R = \frac{D(A, p)}{\delta} \log |1 + \delta (T - t_1)| \quad (6)$$

The total number of deteriorated units is given by

Now the total inventory holding cost for the entire cycle is given by

$$C_{hol} = \tilde{C}_b \int_{t_1}^T e^{-rt} ID(t) dt$$

Again, the total shortage cost C_{sho} over the entire cycle is given by

$$C_{sho} = \tilde{C}_b \int_{t_1}^T \{e^{-rt} I(t)\} dt$$

Cost of lost sale OCLS over the entire cycle is given by

$$OCLS = \tilde{C}_b \int_{t_1}^T e^{-rt} \left\{1 - \frac{1}{1 + \delta(T - t)}\right\} D(t) dt$$

Total cost during the entire cycle is given by

<ordering cost> + <purchasing cost> + <inventory holding cost> + < cost of lost sale> + < inventory shortage cost>

$$\text{i.e., } \tilde{X} = \tilde{C}_4 + \tilde{C}_P(S + R) + C_{hol} + OCLS + \tilde{C}_{sho}$$

Average cost during the entire cycle is given by $Z = \frac{\tilde{X}}{T}$

Hence the corresponding constrained optimization problem is given by

$$\textbf{Problem-1: Minimize } Z(t_1, T) = \frac{\tilde{X}_1}{T}$$

subject to $T > 0$

4. Numerical example

For numerical illustration of the proposed inventory model, we have considered the following example.

Example 1

$\tilde{C}_a = (495, 500, 505)$, $\tilde{C}_b = (1, 1.5, 2)$, $\tilde{C}_p = (25, 30, 35)$, $\tilde{C}_h = (10, 15, 20)$, $a = 45$,

$b = 5$, $c = 10$

$\tilde{C}_{Is} = (10, 15, 20)$, $\theta = 0.5$, $r = 0.06$, $\delta = 1.5$.

Md. Anwar Hossen, Md. Abdul Hakim, S.S.Ahmed and M.Sharif Uddin

Example 2

$\tilde{C}_1 = (490, 495, 500)$, $\tilde{C}_h = (2, 2.5, 3)$, $\tilde{C}_p = (25, 30, 35)$, $\tilde{C}_h = 5$, $\tilde{C}_1 = (10, 15, 20)$, $a = 50$,

$b = 5$, $\tilde{C}_{Is} = (10, 15, 20)$, $\theta = 0.5$, $r = 0.06$, $\delta = 1.5$,

Example 3

$\tilde{C}_a = (540, 550, 560)$, $\tilde{C}_h = (1, 1.5, 2)$, $\tilde{C}_p = (30, 35, 40)$, $\tilde{C}_b = (10, 15, 20)$, $a = 45$,

$b = 5$, $\tilde{C}_{Is} = (10, 15, 20)$, $\theta = 0.5$, $r = 0.06$, $\delta = 0.06$,

According to the solution procedure, the optimal solution has been obtained with the help of LINGO software for different examples. The optimum values of t_1 , T , S and R along with minimum average cost are displayed in **Table 1**.

Examples	S	R	t_1	T	Z
1	53.6081	24.8696	0.9515	1.6561	2121.981
2	91.8766	4.0366	1.7579	1.8300	2298.648
3	39.2629	36.5827	0.7014	1.5997	2139.171

Table 1: Optimal solution for different examples

5. Sensitivity analysis

In the previously discussed example, a sensitivity analysis was conducted to examine how variations (both under and over estimations) in different parameters—such as demand, deterioration, inventory cost parameters, and mark-up rate—affect the maximum initial stock level, shortage level, cycle length, advertisement frequency, and overall system profit. This analysis involved adjusting (both increasing and decreasing) the parameters by -20% to +20%, either individually or in combination, while keeping the other parameters at their original values. The results of this analysis are shown in **Tables 4**.

Parameter	% changes of parameters	% changes in Z^*	% changes in		
			R^*	S^*	T^*
	-20	39.55	20.87	111.15	105.74
C_h	-10	14.58	18.78	70.06	67.69
	10	-0.07	-1.53	-5.13	-5.54
	20	-0.41	-1.79	-9.10	-14.97
	-20	0.20	1.43	-0.34	-0.19
C_b	-10	0.10	0.74	-0.17	-0.08
	10	-0.10	-0.61	0.17	0.13
	20	-0.20	-1.27	0.34	0.23
	-20	422.37	-36.56	93.67	-38.01
C_p	-10	231.17	-0.58	48.4	-27.71
	10	---	---	---	---
	20	---	---	---	---

An Inventory Model with Price and Time Dependent Demand with Fuzzy Valued Inventory Costs under Inflation

	-20	35.53	-17.86	-13.70	-14.34
C_4	-10	17.31	-9.44	-9.32	-9.75

	10	-13.38	18.32	36.32	35.56
	20	-24.31	28.32	57.25	57.55
	-20	---	---	---	---
<i>a</i>	-10	---	---	---	---
	10	344.54	3.14	48.18	-31.93
	20	744.36	-15.63	92.46	-43.40
<i>b</i>	-20	661.44	-12.71	82.46	-41.85
	-10	306.95	1.38	41.25	-30.63
	10	---	---	---	--
	20	---	---	---	---
	-20	-1.95	-3.72	-5.24	-5.65
	-10	-0.81	-2.20	-2.58	-2.87
<i>r</i>	10	10.90	21.55	58.31	56.28
	20	24.45	25.87	78.08	76.89

Table 4: Sensitivity analysis with respect to different parameters with respect to $m=1.3$.

6. Concluding remarks-

This paper deals with a deterministic inventory model for deteriorating items with variable demand inflation effect of the system. In these models, the demand rate is represented as $D(A,p)=AV(a-bp)$. It is well-known that $D(A,p)\propto(a-bp)$ for a fixed A . But why should we consider $D(A,p)\propto$ for fixed value of P ? Typically, item demand fluctuates due to advertisement in well-known media such as radio, TV, newspapers, magazines, and cinema. As the frequency of advertisements increases, the demand for items also rises, being directly proportional to the number of advertisements. Therefore, we take $D(A,p)\propto AV$ for fixed p . This model is also relevant to scenarios where both the selling prices of items and their advertisements influence demand. It is applicable to fashionable goods and both two-level and single-level credit policy approaches.

REFERENCES-

1. P.L. Abad, Optimal pricing and lot-sizing under of conditions of perish ability and partial backordering, *Management Science*, 42 (1996) 1093-1104.
2. S. Anily and A. Federgruen, One warehouse multiple retailer systems with vehicle routing costs, *Management Science*, 36 (1990)
3. R. Amutha and E. Chandrasekaran, An inventory model for deteriorating items with three parameter weibull deterioration and price dependent demand, *Journal of Engineering Research & Technology*, 2(5) (2013) 1931-1935.
4. F. Buffa and and J. Munn, A recursive algorithm for order cycle that minimizes logistic cost, *Journal of Operational Research Society*, 40 (1989) 357. Md. Anwar Hossen, Md. Abdul Hakim, S.S. Ahmed and M. Sharif Uddin 28
5. J.A. Buzacott, Economic order quantities with inflation, *Operational Research Quarterly*, 26 (1975) 553-558.
6. H. Bierman, and J. Thomas, Inventory decision under inflationary conditions', *Decision Science*, 8(1977) 151-155.
7. A.K. Bhunia and A.A. Shaikh, A deterministic model for deteriorating items with displayed inventory level dependent demand rate incorporating marketing decision with transportation cost, *International Journal of Industrial Engineering Computations*, 2(3) (2011) 547-562.
8. A.K. Bhunia and M. Maiti, Deterministic inventory model for deteriorating items with finite rate of replenishment dependent on inventory level, *Computers and Operations Research*, 25 (1998) 997-1006.
9. A.K.Bhunia and M.Maiti, An inventory model of deteriorating items with lot-size dependent replenishment cost and a linear trend in demand, *Applied Mathematical Modelling*, 23 (1998) 301-308.
10. A.K.Bhunia, A.A.Shaikh, A.K.Maiti and M.Maiti, A two warehouse deterministic inventory model for deteriorating items with a linear trend in time dependent demand ver finite time horizon by elitist real-coded genetic algorithm. *International Journal of Industrial Engineering Computations*, 4(2) (2013) 241-258.
11. A.K. Bhunia, A.A.Shaikh and R.K.Gupta, A study on two-warehouse partially backlogged deteriorating inventory models under inflation via particle swarm optimization, *International Journal of System Science*. (2013).
12. W.J.Baumol and H.C.Vinod, An inventory theoretic model of freight transport demand, *Management Science*, 16 (1970) 413 – 421.
13. G.K. Constable and D.C. Whybark, Interactions of transportation and inventory decision, *Decision Science*, 9 (1978) 689.
14. R.P. Covert and G.C. Philip, An EOQ model for items with Weibull distribution deterioration, *American Institute of Industrial Engineering Transactions*, 5 (1973) 323-326.
15. T. Chakrabarty, B.C. Giri and K.S. Chaudhuri, An EOQ model for items with Weibull distribution deterioration, shortages and trend demand: An extention of Philip's model., *Computers & Operations Research*, 25 (1998) 649-657.
16. M. Deb and K.S. Chaudhuri, An EOQ model for items with finite rate of production and variable rate of deterioration, *Opsearch*, 23 (1986) 175-181.
17. T.K. Datta and A.K. Pal, Effects of inflation and time value of money on an inventory model with linearly time-dependent demand rate and shortages, *European Journal of Operational Research*, 52 (1991) 326-333.

18. J.K. Dey, S.K. Mondal, and M. Maiti, Two storage inventory problem with dynamic demand and interval valued lead-time over finite time horizon under inflation and time-value of money, European Journal of Operational Research, 185 (2008) 170- 194.
19. H. Emmons, A replenishment model for radioactive nuclide generators, Management Science, 14 (1968) 263-273.
20. B.C.Giri, A.K.Jalan and K.S.Chaudhuri, Economic order quantity model with weibull deteriorating distribution, shortage and ram-type demand, International journal of System Science, 34 (2003) 237-243. An Inventory Model with Price and Time Dependent Demand with Fuzzy Valued Inventory Costs Under Inflation
21. P. Ghare and G. Schrader, A model for exponential decaying inventories, Journal of Industrial Engineering, 14 (1963) 238-243.
22. B.C. Giri, S.Pal, A. Goswami and K.S. Chaudhuri, An inventory model for deteriorating items with stock-dependent demand rate, European Journal of Operational Research, 95 (1996) 604- 610.
23. A. Goswami and K.S. Chaudhuri, An EOQ model for deteriorating items with shortage and a linear trend in demand, Journal of the Operational Research Society, 42 (1991) 1105-1110.
24. S.K. Goyal and A. Gunasekaran, An integrated production-inventory-marketing model for deteriorating items, Computers & Industrial Engineering, 28 (1995) 755-762.
25. S.K. Ghosh and K.S. Chaudhury, An order-level inventory model for a deteriorating items with Weibull distribution deterioration, time-quadratic demand and shortages, International Journal of Advanced Modeling and Optimization, 6(1) (2004)31-45.
26. B.C. Giri, T. Chakrabarty and K.S. Chaudhuri, Retailer's optimal policy for perishable product with shortages when supplier offers all-unit quantity and freight cost discounts, Proceeding of National Academy of Sciences, 69(A),III (1999) 315-326.
27. T.P. Hsieh, C.Y. Dye and L.Y. Ouyang, Determining optimal lot size for a two ware house system with deteriorating and shortages using net present value, European Journal of Operational Research, 191 (2008) 180-190.
28. C.K. Jaggi, K.K. Aggarwal and S.K. Goel, Optimal order policy for deteriorating items with inflation induced demand, International Journal of Production Economics, 103 (2006)707-714.
29. C.K. Jaggi, A.Khanna and P.Verma, Two-warehouse partial backlogging inventory for deteriorating items with linear trends in demand under inflationary conditions'. International Journal of Systems Science, 42 (2011) 1185-1196.
30. S. Kawale and P.Bansode, An EPQ model using weibull deterioration for deterioration item with time varying holding cost, International Journal of Science Engineering and Technology Research, 1(4) (2012) 29-33.
31. P. Kotler, Marketing Decision Making: A Model Building Approach, Holt. Rinehart, Winston, New York (1971).
32. K.N. Krishnaswamy, N.G. Kulkarni and M. Mathirajan, Inventory models with constraints and changing transportation cost structure, International Journal of Management and Systems, 11 (1995) 91 – 110.
33. S. Ladany and A. Sternleib, The intersection of economic ordering quantities and marketing policies, AIIE Trnsactions, 6 (1974) 173-175.
34. W.Luo, An integrated inventory system for perishable goods with backordering, Computers & Industrial Engineering, 34 (1998) 685 – 693.
35. R.B.Misra, Optimum Production lot-size model for a system with deteriorating inventory,

International Journal of Production Research, 13 (1975) 495-505.

36. M.Mandal and M.Maiti, Inventory model for damageable items with stock-dependent demand and shortages, Opsearch, 34 (1997) 156-166.

37. B.Mondal, A.K.Bhunia and M.Maiti, A model of two storage inventory system under stock dependent selling rate incorporating marketing decisions and transportation cost with optimum release rule, Tamsui Oxford Journal of Mathematical Sciences, 23(3) (2007) 243-267. Md. Anwar Hossen, Md. Abdul Hakim, S.S.Ahmed and M.Sharif Uddin 30

38. R.B.Misra, A note on optimal inventory management under inflation', Naval Research Logistics Quarterl, 26 (1979) 161-165

39. B.N.Mandal and S.Phaujdar, An inventory model for deteriorating items and stockdependent consumption rate, Journal of Operational Research Society, 40 (1989) 483 – 488.

40. G. Padmanabhan and P. Vrat, EOQ models for perishable items under stock-dependent selling rate, European Journal of Operational Research, 86 (1995) 281-292.

41. S.Pal, A. Goswami and K.S. Chaudhuri, A deterministic inventory model for deteriorating items with stock-dependent demand rate, International Journal of Production Economics, 32 (1993) 291-299.

42. A.K. Pal, A.K. Bhunia and R.N. Mukherjee, A marketing oriented inventory model with three component demand rate dependent on displayed stock level (DSL), Journal Operational Research Society, 56 (2005) 113-118.

43. A.K. Pal, A.K. Bhunia and R.N. Mukherjee, Optimal lot size model for deteriorating items with demand rate dependent on displayed stock level(DSL) and partial backordering, European Journal of Operational Research, 175 (2006) 977-991.

44. P.Pal. A.K.Bhunia and S.K.Goyal, On optimal partially integrated production and marketing policy with variable demand under flexibility and reliability consideration via Genetic Algorithm. Applied Mathematics and Computation, 188 (2007) 525-537.

45. S. Sana, S.K. Goyal and K.S. Chaudhuri, A production-inventory model for a deteriorating item with trended demand and shortages, European Journal of Operation Research, 157 (2004) 357-371.

46. S.S ana and K.S. Chaudhuri On a volume flexible production policy for deteriorating item with stock-dependent demand rate, Nonlinear Phenomena in Complex system,7(1) (2004)61-68.

47. B.R. Sarkar, S. Mukherjee and C.V. Balan, An order-level lot-size inventory model with inventory-level dependent demand and deterioration, International Journal of Production Economics, 48 (1997) 227-236.

48. V.Sharma and R.R.Chaudhary, An inventory model for deteriorating items with weibull deterioration with time dependent demand and shortages, Research Journal of Management Sciences, 2 (2013) 28-30.

49. S. Subramanyam and S. Kumaraswamy, EOQ formula under varying marketing policies and conditions, AIIE Transactions, 22 (1981) 312-314.

50. C.K.Tripathy and U.Mishra, An inventory model for weibull deteriorating items with price dependent demand and time-varying holding cost, Applied Mathematical Sciences, 4 (2010)2171-2179

51. A.A.Taleizadeh, D.W.Pentico, M.S.Jabalameli and M.B.Aryanezhad, An economic order quantity model with multiple partial prepayments and partial backordering, Mathematical and Computer Modelling, 57 (2013) 311-323.

52. A.A.Taleizadeh, D.W.Pentico, M.S.Jabalameli and M.B.Aryanezhad, An EOQ problem under uartial delayed payment and partial backordering, Omega, 41 (2013) 354-368.

53. A.A. Taleizadeh, D.W. Pentico, M.B. Aryanezhad and M. Ghoreyshi, An economic order quantity model with partial backordering and a special sale price, European Journal of Operational Research, 221 (2012) 571-583. An Inventory Model with Price and Time Dependent Demand with Fuzzy Valued Inventory Costs Under Inflation, 31

54. A.A. Taleizadeh, H.M. Wee, and F. Jolai, Revisiting fuzzy rough economic order quantity model for deteriorating items considering quantity discount and prepayment, Mathematical and Computer Modeling, 57 (2013) 1466-1479.

55. A.A. Taleizadeh, S.T.A. Niaki and A. Makui, Multi-product multi-chance constraint multi-buyer single-vendor supply chain problem with stochastic demand and variable lead time, Expert Systems with Applications, 39 (2012) 5338-5348.

56. A.A. Taleizadeh, S.T. Niaki, N. Shafii, Ghavamizadeh, R. Meibodi and A. Jabbarzadeh, A particle swarm optimization approach for constraint joint single buyer single vendor inventory problem with changeable lead-time and (r, Q) policy in supply chain, International Journal of Advanced Manufacturing Technology, 51 (2010) 1209-1223.

57. T.L. Urban, Deterministic inventory models incorporating marketing decisions, Computers & Industrial Engineering, 22 (1992) 85-93.

58. P. Vrat and G. Padmanabhan, An EOQ model for items with stock dependent consumption rate and exponential decay, Engineering Costs and Production Economics, 19 (1990) 379-383.

59. H.M. Wee, Deteriorating inventory model with quantity discount, pricing and partial backordering, International Journal of Production Economics, 59 (1999) 511-518.

60. H.M. Wee and S.T. Law, Economic production lot size for deteriorating items taking account of time value of money, Computers and Operations Research, 26 (1999) 545-558.

61. H.M. Wee and S.T. Law, Replenishment and pricing policy for deteriorating items taking into account the time-value of money, International Journal of Production Economics, 71 (2001) 213-220.

62. H.L. Yang, Two-warehouse inventory models for deteriorating items with shortage under inflation,

Cite this Article-

Mandeep Singh, Dr. Ravendra Kumar, Gaurav Gupta, "An Inventory Model with Fuzzy Valued Inventory Costs under Inflation Price and Time Dependent Demand", Procedure International Journal of Science and Technology (PIJST), ISSN: 2584-2617 (Online), Volume:1, Issue:7, July 2024.

Journal URL- <https://www.pijst.com/>

DOI-<https://doi.org/10.62796/ pijst.2024v1i7003>

Published Date- 08/07/2024