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Abstract- In this work, we have created a fuzzy inventory model for degrading
goods that takes the system s impact of inflation into account and includes price
and time-dependent demand. If there are any shortages, they are permitted and
will be partially backlogged at a variable rate based on how long it takes for the
next lot to arrive. The corresponding problem has been presented as an optimisation
problem with constraints that is nonlinear; all of the cost parameters have been
addressed with fuzzy values. To demonstrate the paradigm, a numerical example
has been examined, and the key findings are highlighted. Ultimately, using these
instances as a b8.81S sen81t1V1ty assessments were conducted by examining one
parameter at a time while maintaining the same values for the other parameters.

Keywords- Inventory, deterioration, time dependent demand, partially
backlogged shortage, inflation, fuzzy valued inventory costs
Introduction-

The majority of inventory models have been established under the premise that
an item’s life span is limitless while it is in storage, meaning that once an item 1is
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in stock, it remains unmodified and completely useable for satisfying future demand,
according to the literature currently available on inventory control systems. Due to
the influence of deterioration in the preservation of regularly used physical items
like wheat, rice or any other form of foodgrains, vegetables, fruits, medications,
pharmaceuticals, etc., this assumption is not always accurate in real life situations.
A portion of these products aren’t in perfect condition to meet demand since they’'ve
been harmed, degraded, evaporated, or affected by other circumstances, among
other things. Therefore, in the examination of the inventory system, the loss
resulting from this natural phenomena (i.e., the deterioration effect) cannot be
disregarded. The first inventory model for exponentially decaying inventory was
created by Ghare and Schrader in 1963. Next This kind of variable deterioration
model, which adheres to the two-parameter Weibull distribution, was proposed by
Emmons in 1968. Several researchers, including Covert and Philip (1973), Giri et
al. (2003), and Ghosh and Chaudhari (2004), expanded and enhanced these models.
Conversely, Md. Anwar Hossen, Md. Abdul Hakim, S.S. Ahmed, and M. Sharif
Uddin 22; Giri et al. (1999); Sana et al. (2004); and Chakrabarty et al. (1998)
Inventory models for degrading objects with a one-parameter Weibull distributed
deterioration were developed by Sana and Chaudhari (2004) and others.

The public’s demand for an item can be altered in the current competitive market
by marketing policies and conditions including price fluctuations and product
advertising. People are motivated to buy more when an item is promoted and
canvassed through sales agents and advertisements in well-known media like radio,
newspapers, magazines, television, and movies. One of the deciding criteria when
choosing an item for use is also its selling price. It is well known that whereas
higher selling prices have the opposite impact, lower selling prices lead to an
increase in demand.

Thus, it may be said that the requirement for an item is dependent upon its
selling price, quantity of advertisements, and inventory that is on display in a
showroom. Very few researchers studying OR and Practitioners investigated how
price changes and advertisements affected the pace at which products were
demanded. In addition to discussing the connection between pricing decisions and
economic order quantities, Kotler (1971) integrated marketing policies into inventory
decisions. In 1974, Ladany and Sternleib conducted research on how price variation
affects sales and, in turn, EOQ. They did not, however, take the impact of advertising
into account.

Inventory models combining the impacts of price fluctuations and advertisement
on an item’s demand rate were established by Subramanyam and Kumaraswamy
(1971), Urban (1992), Goyal and Gunasekaran (1995), Abad (1996) and Luo (1998),
Pal et al. (2007), and Bhunia and Shaikh (2011). In addition to the rate of
degradation, inflation and the time value of money are two realistically significant
elements that experts generally agree have a significant impact on the decisions
made about inventory strategy. Misra (1979) and Buzacott (1975) presented
inventory models that took inflation into account for all related expenditures.

Two years later, Bierman and Thomas (1977) created an EOQ model that
included the time value of money and the impact of inflation. Misra (1979) created
an inventory model based on the hypotheses of varying inflation rates for various
related costs and steady demand. An EOQ model for products with stock dependent
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consumption rate and exponential decay was created by Vrat and Padmanabhan
in 1990. In 1991, Datta and Pal presented an inventory model that took time
value of money and inflation into account, along with a linear demand rate and
shortages. Wee and Law (1999, 2001) created inventory models that considered
the time value of money for items that were deteriorating.

In addition to these, additional scholars who have made contributions to this
field of study include Yang, Teng, and Chern (2001), Yang (2004, 2006), Jaggi,
Aggarwal, and Goel (2006), Hsieh, Dye, and Ouyang (2008), Dey, Mondal, and
Maiti (2008), dJaggi, Khanna, and Verma (2011), and others.
Yang (2004) took into consideration two distinct scenarios and suggested a two
warehouse inventory model with constant demand rate for degrading products
under inflation. In the first instance, he made the assumption that there would be
shortages at the end of an instantaneous order. The model starts with shortages
in the second scenario and finishes with none. Yang (2006) expanded these models
by using partial backlogging.

Taleizadeh et al. (2012) and Taleizadeh et al. (2013 a, b) developed single
warehouse inventory models taking partial backlog into consideration. In a two-
warehouse system, Jaggi, Khanna, and Verma (2011) have suggested an inventory
model that takes inflation, a partial backlog rate, and a linear time-dependent
demand rate for degrading items into account. In this research, we have built an
inventory model for degrading items that takes into account the system’s inflation
effect and frequency-dependent demand for advertisements. If there are any
shortages, they are permitted and will be partially backlogged at a variable rate
based on how long it takes for the next lot to arrive. The related issue has been
solved after being stated as a nonlinear constrained optimisation problem.

To demonstrate the paradigm, a numerical example has been examined, and
the key findings are highlighted. Finally, using these instances as a basis, sensitivity
analyses have been performed, one parameter at a time, while maintaining the
same values for the other parameters. The impacts of the various factors on the
initial stock level, shortage level, cycle length, and optimal profit have been
Investigated.

Assumptions and notations

The following assumptions and notations are used to develop the proposed model:
(1) The entire shipment is delivered in a single batch.

(11) The system accounts for the effect of inflation.
(111) The demand rate D(p,t)D(p,t)D(p,t) depends on time and is represented as
D(p,t)=a”bp+tctD(p,t) = a - bp + ctD(p,t)=a”’bp+ct, where a,b,c>0a, b, ¢ > 0a,b,c>0.
(iv) Deteriorated units are neither repaired nor refunded.
(v) The inventory system includes only one item and one stocking point, with an
infinite planning horizon.
(vi) Replenishments occur instantly, and the lead time is constant.

(vil) The replenishment (ordering) cost is constant, and transportation costs for
replenishing the item are not included.

(viil) The inventory cost parameters have fuzzy values.
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Notations:
I(t)

S

Inventory level at time t

Highest stock level at the beginning of stock-in period
Highest shortage level

Deterioration rate (0<6<<1)

Fuzzy replenishment cost per order

Backlogging parameter

Fuzzy purchasing cost per unit

Md. Abdul Hakim, S. S. Ahmed and M.Sharif Uddin

r

Selling price per unit of item

Time dependent demand

Fuzzy holding cost per unit per unit time
Fuzzy shortage cost per unit per unit time
Fuzzy opportunity cost due to lost sale

Time at which the stock level reaches to zero

ISSN: 2584-2617 (Online)

Time at which the highest shortage level reaches to the lowest point

Inflation rate

3. Inventory model with shortages

In this model, it is assumed that after fulfilling the backorder quantity,

the on-hand inventory level is S at t=0 and it declines continuously up to the

time t= t2 when it reaches the zero level. The decline in inventory during the
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closed time interval 0<t <t. occurs due to the customer's demand and
deterioration of the item. After the timet = t2, shortage occurs and it
accumulates at the rate [1+ 6(T—t)]'1, (6>0 ) up to the time t = T when the next
lot arrives. At time t =T, the maximum shortage level is R. This entire cycle then

repeats itself after the cycle length T.

Let I(t) be the instantaneous inventory level at any timet >0. Then the

inventory level I(t) at any time t satisfies the differential equations as follows:

di(t)

T"‘Q 1(t) = —D(p,t),OStStl (1)
aiee) _ _-D.b
dt  [1+6(T—t)’ s ®

with the boundary conditions
I(t) = S att=0, I(t)=0 at t=t, (3)
and I(t)=-R at t=T. (4)
Also, I(t) 1s continuous at t=t:

Using the conditions (3) and (4), the solutions of the differential equations (1)-(2)

aregiven by

1(t)=S — D(A, p)t 0<t <t
D(AP) Q(tl—t) _
B {e 1} i<t <t>

D(AP)
5

Jog| 1+8(T—t) |-R, ta<t<T
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Inventory Costs Under Inflation

Using continuity condition we have
S = DA, p)ti+ ZT{e? 7 —1; (5)

From the continuity condition, we have

_D(A P)

R= -log | 1+8 (T—t) | (6)

The total number of deteriorated units is given by

Now the total inventory holding cost for the entire cycle is given by
Chol =C;, [, e " ID(t)dt

Again, the total shortage cost Csnho over the entire cycle is given by

Ceno = Cp [, {7 I(t)}dt

Cost of lost sale OCLS over the entire cycle is given by

OCLS =G, f,e™ {1— }D(t)dt

1+ 6 (T
Total cost during the entire cycle is given by

<ordering cost> + <purchasing cost> + <inventory holding cost> + < cost of lost

sale>+< inventory shortage cost>
ie., X =Cs+ Cp(S + R) + Chol + OCLS + Csho

Average cost during the entire cycle is given by Z :;

Hence the corresponding constrained optimization problem is given by
Problem-1: Minimize Z (t:,T) ===

subject to T >0
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4. Numerical example

For numerical illustration of the proposed inventory model, we have

considered the following example.

Example 1
Ca = (495,500, 505), Cp = (1,1.5,2), Cp, = (25,30,35), C» = (10,15,20), a=45,
b=5,c=10
Cis= (10,15,20), 86 = 0.5, r = 0.06, 5§=1.5.
Md. Anwar Hossen, Md. Abdul Hakim, S.S. Ahmed and M.Sharif Uddin
Example 2

C€1=(490,495,500), Cn =(2,2.5,3), Cp =(25,30,35), Cr=5, €:=(10,15,20), a = 50,
b=5, C1s = (10,15,20), 8 =0.5, r = 0.06, 5§ = 1.5,
Example 3
Ca =(540,550,560), Cn =(1,1.5,2), €p,=(30,35,40), Cv» =(10,15,20),a = 45,
b=5,C1s =(10,15,20), 6=0.5, r = 0.06,5 = 0.086,

According to the solution procedure, the optimal solution has been obtained with
the help of LINGO software for different examples. The optimum values of t., T,

S and R along with minimum average cost are displayed in Table 1.

Examples |S R ti T Z

1 53.6081 24.8696 0.9515 1.6561 2121.981
2 91.8766 4.0366 1.7579 1.8300 2298.648
3 39.2629 36.5827 0.7014 1.5997 2139.171

Table 1: Optimal solution for different examples

5. Sensitivity analysis
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In the previously discussed example, a sensitivity analysis was conducted to
examine how variations (both under and over estimations) in
parameters—such as demand, deterioration, inventory cost parameters, and
mark-up rate—affect the maximum initial stock level, shortage level, cycle
length, advertisement frequency, and overall system profit. This analysis
involved adjusting (both increasing and decreasing) the parameters by -20% to
+20%, either individually or in combination, while keeping the other parameters
at their original values. The results of this analysis are shown in Tables 4.

different

% changes of |9 changes % changes in
Parameter
parameters in Z* R s* P
—-20 39.55 20.87 111.15 105.74
Ch -10 14.58 18.78 70.06 67.69
10 -0.07 -1.53 -5.13 -5.54
20 -0.41 -1.79 -9.10 -14.97
—-20 0.20 1.43 -0.34 -0.19
Cp -10 0.10 0.74 -0.17 -0.08
10 -0.10 -0.61 0.17 0.13
20 -0.20 -1.27 0.34 0.23
-20 422.37 -36.56 93.67 -38.01
Cp -10 231.17 -0.58 48.4 -27.71
10 .- .- - -
20

An Inventory Model with Price and Time Dependent Demand with Fuzzy Valued

Inventory Costs under Inflation

—-20

35.53

-17.86

-13.70

-14.34

Cy

—-10

17.31

-9.44

-9.32

-9.75
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10 -13.38 18.32 36.32 35.56
20 -24.31 28.32 57.25 57.55
—20
a —10
10 344.54 3.14 48.18 -31.93
20 744.36 -15.63 92.46 -43.40
—20 661.44 -12.71 82.46 -41.85
b -10 306.95 1.38 41.25 -30.63
10 -
20
—20 -1.95 -3.72 -5.24 -5.65
-10 -0.81 -2.20 -2.58 -2.87
r 10 10.90 21.55 58.31 56.28
20 24.45 25.87 78.08 76.89

Table 4: Sensitivity analysis with respect to different parameters with

respect to m=1.3.

6. Concluding remarks-

This paper deals with a deterministic inventory model for deteriorating items
with variable demand inflation effect of the system. In these models, the demand
rate is represented as D(A,p)=AV(a—bp). It 1is well-known that D(A,p)x(a—bp) for
a fixed AAA. But why should we consider D(A,p)x for fixed value of P? Typically,
1tem demand fluctuates due to advertisement in well-known media such as radio,
TV, newspapers, magazines, and cinema. As the frequency of advertisements
increases, the demand for items also rises, being directly proportional to the
number of advertisements. Therefore, we take D(A,p)xAV for fixed p. This model
1s also relevant to scenarios where both the selling prices of items and their
advertisements influence demand. It is applicable to fashionable goods and both
two-level and single-level credit policy approaches.
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