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Abstract

Selling price and purchase cost typically vary with economic conditions in today’s
competitive markets. For a business to be profitable, both the selling price and the
purchasing cost are essential. As a result, I expand the inventory model Teng and
Yang (2004) established in this study to incorporate the ability for both the selling
price and the purchasing cost to fluctuate over the course of a defined time horizon
between replenishment cycles. The goal is to determine the best pricing strategy
and replenishment schedule in order to maximise profit. The existence, uniqueness,
and global optimality of the suggested solution are guaranteed by the conditions
that lead to a maximising solution. Some theoretical results and an effective
approach for solving the problem are offered. Finally,numerical examples for
illustration and sensitivity analysis for managerial decision making arealso
performed.

Keywords- Partial backlog , inventory, deteriorating item, varying price
1. Introduction

In today’s time-based competitive market, a product’s unit selling price may rise
significantly in response to an increase in demand, particularly for costly or popular
commodities. Yet, because to things like competltlon technological advancements,
and other factors the selling prices of goods can decrease significantly over the
course of their life cycles. As a result, the selling price is not constant. On the other
hand, certain products see a reduction in cost as demand rises. For example, the
unit cost of a high-tech product experiences a large decline during the course of its
brief product life cycle.
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For example, the cost of a personal computer drops constantly as shown in Lee
et al. 1.

Additionally, as Heizer and Render 2 have noted, the purchase cost as a
percentage of sales is frequently significant. Thus, it is crucial to consider the
fluctuating selling price and purchase cost from the standpoint of integrated logistics
management.

Furthermore, in actuality, the backorder rate decreases with the duration of the
waiting period for high-tech and trendy commodities with short life cycles. When a
provider runs out of stock, customers are less inclined to repurchase from them
and are more likely to shop elsewhere. A shift in customer tastes or the arrival of
more competitive products could result in a fall in the product’s sales. The
backlogging rate decreases as waiting times increase. As a result, there is less
profit and a higher percentage of lost transactions.

Therefore, 1t is essential to consider the partial backlog issue. Abad [3] suggested
the best price and lot-sizing strategy for situations including partial backordering
and perishability. The partial backlog inventory model with time-varying demand
and purchasing cost was examined by Teng et al. [4]. After taking into account the
inventory model with selling price and purchasing cost, Chang et al. [5] offered the
best replenishment strategy for a retailer to reach maximum profit. Various models
were created by numerous authors to investigate the impact of the elements (buying
cost and/or selling price) on the relevant issue.For instance, under generalised
holding costs, Teng and Yang [6] presented inventory lot-size models with time-
varying demand and purchasing costs. Abad [7] took the pricing strategy into account
and gave a retailer the best price and lot size when the selling price determined
the demand. Sana [8] recently presented the best pricing strategy for an inventory
model with partial backlogs and price-dependent demand. An ideal shipment plan
for defective items in a stock-out scenario was put out by Das Roy et al. [9]. Once
more, Das Roy et al. [10] offered an economic-order quantity model for incomplete
backlog items of unsatisfactory quality.The major assumptions and objectiveused
in the above research articles are summarized in Table 1.

Therefore, in contrast to the previously stated publications, the inventory model
used here was created as proposed by Teng and Yang [11] to account for changing
purchasing and selling costs that vary across a finite time horizon from cycle to
cycle of replenishment. Finding the best pricing strategy and replenishment
schedule 1s the goal, not minimising costs, but rather max1m1s1ng profit.

Because the overall profit from the inventory system is a concave function of the
number of replenishments, finding the ideal number of replenishments to reach a
local maximum ismade easier. Additionally, a naturally derived approximation for
determining the ideal refill quantity is offered. Sensitivity analysis for managerial
decision making is carried out, along with some numerical examples for illustration.
A summary and recommendations for additional research are given at the end.

2. Assumptions and Notation

The following presumptions form the foundation of the inventory replenishment

problem’s mathematical model:
1. Here, the inventory problem has a finite planning horizon, which is represented
by H time units. During the time horizon H, the initial and final inventory
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levels are both 0.
2. There 1s no lag time and quick replenishment.

3. In actuality, the object might deteriorate with time. For the sake of simplicity,
we’ll assume that there is no repair or replacement for the degraded objects,
and that the rate of deterioration is constant.

ISSN: 2584-2617 (Online)

Table 1: fundamental feature of inventory models on certain articles.

Author(s)(published | Demand rate Deterioration | Allow for With partial | Purchasing | Selling | Objective

year) rate shortages backlogging | cost price

Abad (1996)[3] Price dependent | Time varying | Yes Yes Constant Variable | Profit maximization

Teng et al. Time dependent | Constant Yes Yes Constant X Cost minimization

(2002)14] (logconcave)

Teng and Yang Time dependent | Constant Yes Yes Timevaryin | X Cost minimization

2004[11] g

Chang et al. Time and price Constant Yes Yes Constant Variable | Profit maximization

(2006)[5] dependent

Teng and Yang Time dependent | X Yes X Timevaryin | X Costminimization

(2007) [6] g

Abad (2008)[7] Price dependent | Time varying | Yes Yes Constant Variable | Profit maximization

Sana (2010)[8] Price dependent | Time varying | Yes Yes Constant Variable | Profit maximization

Roy et al. Constant UniformDistr | Yes Yes Constant Constant | Costminimization/Pr

(2011a)[9] ibution ofitmaximization

Roy et al. Constant UniformDistr | Yes Yes Constant Constant | Profit maximization

(2011b)[10] ibution

Present paper Time dependent | Constant Yes Yes Timevaryin | Timevar | Profit maximization
g ying

4. Shortages are allowed. Unsatisfied demand is backlogged, and the fraction of
shortagesbackordered is a decreasing function of time t, denoted by at, where t
1s thewaiting time up to the next replenishment, and 0 d”"R“XA“ at d’R“XA“
1 with a0 1. Note thatif at 1 or O for all t, then shortages are completely
backlogged or lost.

5. In the scenario of lost sales, the opportunity cost includes both the revenue
loss and the cost of lost goodwill. Therefore, the opportunity cost in this situation
1s higher than the unit purchasing cost. For details, see Teng et al. [4].

6. In today’s highly competitive global market, we assume that both the selling
price and purchasing cost vary over time and change from one replenishment
cycle to the next within a finite time frame.

For convenience, the following notation is used throughout this paper:
H: the time horizon under consideration,
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f (t) : the demand rate at time t, without loss of generality, we here assume that

f (t)is increase, positive, differentiable in [0,H]

: (Ij—f ] (t) : the purchasing cost per unit at time t, which is positive, differentiable in

O, M
p(t) : the selling price per unit at time t, which is positive, differentiable in [0, H],
e: the deterioration rate,

: the fixed ordering cost per order,

: the inventory holding cost per unit per unit time,

c,: the backlogging cost per unit per unit time, if the shortage 1s backlogged,

c,: the unit opportunity cost of lost sales, if the shortage is lost. We assume without

loss of generality that c¢> c (1),

n: the number of replenishments over [0, H] a decision variable,

t.: the ith replenishment time a decision variable,11, 2, ..., n,

siz the time at which the inventory level reaches zero in the ith replenishment
cycle

a decision variable, 11, 2, ..., n.
4. Mathematical Model

For simplicity, we use the same inventory model as in Teng and Yang 11, which
1s shown inFigure 1.

As a result. we obtain the time-weighted inventory during the ith cycle as

f

’.:T‘

1—— S][eﬂit W 1]f@¢)dt,i 1,2,...,n. (3.1)
Slmﬂarlv the time-weighted backorders due to shortages during the ith cycle is
B= f (Goa DAY dti=1, 2, n, (3.2)
Inventory
level

iy

) l
h

Figure 1: Graphical representation of inventory model.
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and the total number of lost sales due to shortages during the ith cycle is

L= [ [1-B(t,_—t)]firdt,i=1.2, .. _, n, (3.3)
The order gquantity and unit sold at t; in the ith replenishment cvele is

Q= [ Bt —o)fiydt+[Te* ¥ Fdei=1.2.. ., n, (3.4)

and unit sold at ti in the ith replenishment cyele is

S= [0 B — 0D dt+[TF(Ddi=12, n. (3.5)
Therefore. the purchasing cost during the ith replenishment evele is

Pi=cs + ¢y (t:) @

=i+ @[T B— O F (O dt + [FePCVF ) dt]  (3.6)
Therefore, the purchasing cost during the ith replenishment eycle is
Ri=p)[[* B(t—f (Ddt+ [*Ff(®atfi=1.2 .. n, (3.7

Hence, if n replenishment orders are placed in [O.H]. then the total

realized profit of the inventory system during the planning horizon H is

TP (n. {s;h.{t;}) =ZiZi(R; — B — Cp; — ¢, B; — ¢, L)

EE‘;"-:lJ';i_;E...E{Lp{tf:l -Cylti - t) +o] B(t;—t) — o f (t) dt- ncg} (3.8)

+E [ () — eplt) — (2 +ep(t) (Y — )] £(1) dt

with 0 so=< t1 and s;= H. The problem is to determine n, {s;}. and {ti} such

that

TP(n, {si}, {ti} in (3.8) is maximized.
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4. Theoretical Results and Solution

For a fixed value of n. the necessary conditions for TP(n.{si. {ti} to be
maximized are:dTP(n. {=}. {ti/0t= 0 for 1 1. 2, . . . | n, and ¢TP(n. {s.

tiHosi= 0, for. 1 =12, . _, n — 1 Consequently, we obtain

f CHRNE) + [en + 0 () — cL(£)]FTPYF() dt

— .r:L L {[Pl[tf] - ‘5';-, (ti) — ] B[ti —t) + [Pl[tf] +c— Cp I:tz' - t]B[ti - tjg:g }f[t) dt
(4.1)
[o(tis1)— cpltivs)— cpltivy — s Bltisy — 50— o [1— Bty — )

= p(t)— c(t)—[ (2 +ep(t)] (2% — 1) (4.2)

Respectively. Note that (4.1) and (4.2) are coincident with the following

articles’
(1) Equations (12)and (11) in Teng and Yang [11], if p(t) =0,
(2) Equations (15) and (14) in Teng et al. [4], if p(t)= 0 and e«(t)= cv.
(3)Equations (11)and (10) in Chang et al [5]. if p(t) = p and edt) =c-.

Thus, the model here proposed is a generalization of the above three
mentioned models. For simplicity, from (4.2), let the marginal resultant

profit per unit during no shortage and shortage period be
R (t, w) =p(t)— exlt)— [T+ exlt)] (e®m) — 1) (4.3)
with t <u, and

P(s, t) = [p(t)— ev(t)— c,(t- =)]B (t- 5) —ei [1- B(t— s)] (4.4)
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With s < t. respectively. Taking the partial derivative of R{t, u) and P(s.t)
with respect to t respectively. we obtained the following results:

R:lt.u) = p(t)+ [ch+Bedt) — e (t) e®u—t) (4.5)
Pi(s.t)= [p(t) —ce(t)—eu]B (t—s) + [pt) + o —cr () —en(t—s) B (t —=). (4.6)

Note that the longer the waiting time, the lower the marginal
resultant profit. Consequently, P(s t) is a decreasing function of t. Thus, we
may assume without loss of generality that P: (st)= 0, for all t = =. Then,
we obtain the following result.
Lemma 4.1. For any given n, if Ra (tit) < 0, with t = ti, and P:(i.t), ti= 0,
with t=<t1,1=1, 2, . . ., n, then the optimal solution isn* = 1 and t=t; = 0
(i.e.. purchase at the beginning).

Proof See Appendix A.

The results in Lemma 4.1 ecan be immterpreted as follows. The
condition Ru (ti, t) < Oimplies that p (t)+ [en + Oeolt)]e®t < go(t) et This
means that the increasing rate of the unit purchasing cost is higher than

or equal to the sum of the marginal selling price and marginal inventory

carrving cost per unit which includes inventory and deterioration costs.

Therefore, buyving and storing a unit and then selling now are more

profitable than buving and selling it later.

Theorem 4.2. For any given n, if Ra(ti, t)= 0, with t = ti, and Pti (t. ti)= 0,
with t <t 1=1. 2, .. _, n, then the sclution that satisfies the syvstem of

(4.1) and (4.2) exists uniquely and 0 < sig<ti=s; for1=1. 2, .. .  n.

Proof. See Appendix B.
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The result in Theorem 4.2 reduces the Zn-dimensional problem of
finding {s;} and {t]}to a one-dimensional problem. Sinece s;= 0, we only
need to find {t;} to generate s; by (4.1), t:by (4.2), and then the rest of {s]}
and {t’} unigquely by repeatedly using (4.1) and (4.2). For any chosen t;, if
s:= H. then t]is chosen correctly. Otherwise, we can easily find the

optimaltby standard search technigues.

Having calculated the second partial derivatives of the function TP

(n. {si}. {ti} shows that the Hessian matrix is negative definite if

8*TP __ 8*TP a8°TP _ i
2= =0, fori 1.2, ... . n 47
Elrf' - I:Elsl-ar[ + Bt aj.l._;| 2 . &y, . . ( :I
25TP . 25 TP 2*TP )
== <0 fori 1.2, ... .n 418
ds I:E,';?[E'r[ + At .-‘_';Igl:+._:| ’ 2 &, - . ( :|

Theorem 4.3. For any given n. if Rua(ti, t)= 0, with t = ti. and Palt. ti)= 0,

witht=+t.,1=1, 2 n, under conditions (4.7) — (4.8), then the sohation

-----

that satisfies the svstem of (4.1) and (4. 2) i=s a global maximum sclution.
Proof. See Appendix C.

Next, we show that the total profit TP (n.{s’}. {tJ} i= a concave
function of the numberof replenishments. As a result, the search for the
optimal replenishment number., n*, is reduced to find a loecal maximum.

For simplicity, let
TP (nz= Pin. s}, {t7}) (4.9)

By applying Bellman's principle of optimality [12]. we have the following

theorem:

Theorem4.4.TP (n) is concave in n.
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The result m Theorem 4.2 reduces the Zn-dimensional problem of
finding {53} and {/}toc a one-dimensional problem. Smce s¢= 0. we only
need to find {£]}to generate 57 by (4.1), £3byv (4.2), and then the rest of {53}
and {f/} uniquely by repeatedly using (4.1) and (4.Z). For any chosen t;. if

*

s+= H. then tjis chosen correctly. Otherwise, we can easily find the

optimalf (by standard search technigues.

Having calculated the second partial dermvatives of the function TP

(n, {si}. {ti} shows that the Hessian matrix 1s negative definite 1f

8°TP [ﬂ:TP a°TP ] i -
= — =<0.for1 1.2, ....n 4.7
der T Gs; Ot Gt Gsi—y : i : : : I: ::I
i [ﬂ:'IP TP ]
= — <0 fori1 1.2.....n 4 5
ds; = d=; 0t Gt 852y ) T T ( )

Theorem 4.3. For any given n., if Ruw(ti, t)= 0, with t = ti, and Puit, ti=< 0O,
with t < t.1=1. 2, . . . . n, under conditions (4.7) — (4.8). then the solution

that satisfies the svstem of (4.1) and {(4.2) 1= a global maximum solution.
Proof. See Appendix C.

MNext. we show that the total profit TP (n. {s/}. {f/} 15 a concave
funection of the numberof replenishments. As a result, the search for the

optimal replenishment number, n*, 15 reduced to find a local maximum.

For simplicity, let
TP (n)=P(n{53. &) (4.9)

By applymg Bellman's principle of optimality [12], we have the following

theorem:
Theorem 4.4. TP (n) 1s concave 1In 1.
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Proof. The proof 1s similar to that of Teng and Yang [11]. the reader

can easily prove 1t.

By a similar discussion as in Teng and Yang [11]. I here use the
average backlogging rate 5. unit purchasing cost oy and average unit
sellling price p to replace B (tix1 —si). o (ti) and p (t). respectively. The
estimate of the number of replenishments 1s obtained as

e

152
(en +Bey)[ fnﬂ+':-=c—-=u+p}u:1—|3}Hcau:H33]
Zejplep+Boy + cp B (ei—ep+pi (1 —R1] 2 {4_10}

ni1= rounded integer n-f[

Where Q(H) = fféiiiéf {t) dt. It 1s obvious that searching for n* by starting
with n m (4.10) will speed the computational efficiency significantly,
comparing to starting with n = 1. The algorithm for determining the

optimal number of replenishments n* and schedule I summarized as

follows.
Algorithm for Finding Optimal Number and Schedule

Step 1. Choose two nitial trial values of n*. say n as 1 (4.10) and n — 1.
Use a standard search method to obtain {7} and {s7}. and compute the

corresponding TP{n) and TPin — 1), respectively.

Step 2. If TP(n) = TP(nn — 1), then compute TP(n+1), TP(n+ 2). . . ., until we
find TP(k)=>TP(k+1). Set n*= k and stop.

Step 3. If TP(n)< TP(n — 1), then compute TP(n — 2), TP(n — 3), . . .. until
we find TP(k)=TP(k— 1. Set n*= k and stop.

2. Numerical Examples

Example 5.1. Let f (t)= 200+ 20t, H = 3, p(t) = 200 + 30t, e{t)=150+10t, e~

250, ep= 40.co= 50, o= 200, 6=0.08. B(ty—eT# in appropriate units. After
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calculation, we have p = 245, ¢ = 165, and a= 0.582. By (4.10), we obtain the
estimate number of replemshmentsn1 = 12. From computational results, we have
TP(13) 49021.79, TP(14)= 49044.31, and TP(15)= 49030.61. Therefore, the optimal
number of replenishments 1s 14, and the optimal profit is 49044.31. The optimal
replenishment schedule is shown in Table 2.

Table 2: The optimal replenishment schedule for Example 5.1.

1 1 2 3 4 5 6 7

ti 0.0849 | 0.3160 | 0.5437 | 0.7683 | 0.9899 | 1.2086 | 1.4245

Si 0.2330 | 0.4626 | 0.6889 | 0.9121 | 1.1323 | 1.3497 | 1.5644
p (ty) | 202.55 | 209.48 | 216.31 | 223.05 | 229.70 | 236.26 | 242.73
cv (t) | 150.85 | 153.16 | 155.44 | 157.68 | 159.90 | 162.09 | 164.24

1 8 9 10 11 12 13 14

ti 1.6378 | 1.8485 | 2.0569 | 2.2629 | 2.4666 | 2.6682 | 2.8676

Si 1.7765 | 1.9861 | 2.1933 | 2.3982 | 2.6009 | 2.8015 | 3.0000
p (t) | 249.13 | 255.46 | 261.71 | 267.89 | 274.00 | 280.05 |286.03
cv (t) | 166.38 | 168.49 | 170.57 | 172.63 | 174.67 | 176.68 | 178.68

Table 3: Sensitivity analysis on parameters changed for Example 5.2

Volume: 1, Issue: 2, Feburary 2024
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Paramet | Paramet | % change | Estimate | Optimal | TP*(n*) | %chang
er er value |in d n; n* e
parameter inTP*(n*
)
cf 200 —20 14 16 49787.4 | 1.52
300 +20 11 13 T ~1.37
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ch 30 ~95 12 14 49379.8 | 0.68
50 +95 13 15 0 ~0.60
48748.2
0
e 40 ~20 12 14 49135.5 |0.19
60 +20 13 14 6 ~0.17
48961.0
5
cl 150 ~95 12 14 49238.3 | 0.40
250 +95 13 14 3 ~0.33
48883.4
2
0 0.06 25 12 14 49152.1 | 0.22
0.1 +95 13 14 6 ~0.21
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N

Example 5.2. To understand the effect of changes in parameters c, c, , €,
a(t) on the optimal solution, the sensitivity analysis is performed by fhanglng one
parameter at a time and keeps the others unchanged. The parameter values are
the same as in Example 5.1. The results obtained are shown as in Table 3.

From Table 3, the following phenomena can be obtained.

1. The optimal maximum proﬁt decreases as c, ,c,, ¢,, ¢, € Increases, however, it
increases as the backloggmg rate a (t) increases.

2. The optimal maximum profit is more sensitive on parameters c, than others.

3. The optimal replenishment number is very slightly sensitive to the change of
the separameters except c, and a(t).

4. The estimated number n1 is very close to the optimal replenishment number
n’, no matter what magnitude of the parameters changed.

Example 5.3. Using the same numerical values as in Example 5.1, we consider
the influence of changes of the rate of change of selling price p(t) and purchasmg
cost ¢ (t) on the total profit. The results are obtained as shown in Table 4

Table 4: Sensitivity analysis on rate of change for Example 5.3.

p(t), cv(t) % change | Estimated | Optimal TP+*(n*) % change
in rate of | n; n* in TP*(n*)
change

p(t) 200 +|— 12 14 49044.31 |0.00

30t L\ 8

cv(t)150+10t

p(t) 200 +|+50 13 15 64887.92 | 32.30

45t L

cy(t)

150+10t

p(t) =50 12 14 33314.34 | 32.07

200+15t B

cy(t)
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cv(t)

150+10t

p(t) 200 +|— 12 14 43768.8 | —10.76

30t

cv(t)

150+15t

p(t) 200+ | — 12 14 54329.55 | 10.78

30t —50

cv(t) 150

+5t

From Table 4, it is obviously that the phenomena are obtained.
1. The percentage change in total maximum profit is significantly sensitive on
the variation of rate of change.

2. The total profit increases as the rate of change of selling price increases, while
decreases as the rate of change of purchasing cost increases.

3. The estimated number n, is also close to the optimal replenishment number
n.

4. The optimal replenishment number is slightly sensitive to the change of rate
of change.

6. Conclusions

This study examines a partial-backlogging inventory lot-size model for degrading
goods with variable purchase costs, time-dependent demand, and selling prices.
We demonstrate that there is only one ideal replenishment schedule and that the
inventory system’s overall profit is a concave function of the number of
replenishments. A heuristic approximation for determining the ideal replacement
quantity is offered. According to the results of the sensitivity analysis, there is a
considerable impact on the behaviour of the system from variations in the rate of
change of the purchasing cost and selling price.

The selling price and the purchase cost must therefore be included in the
inventory model; this is especially important given the volatile nature of the current
market. By adding more useful features, the model developed here can be expanded
even further by adding new functions or parameters, like taking into account
demand as a function of selling price or stock dependent, or time-varying
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deterioration rate. It can also be developed by adding additional factors, like inflation
and price discount.

A, Proof of Lemma 4.1

Let
TPz, t, mitia) =~|r:,'_| " [p (£} — e, (ti} — ] Blt; — t)— g ]f{tj dt
S [ple) — o) — [+ ev(r)] (%% — D} i) de (A1)

=j"_l (e, r,:.L’I"' G Rt t) FiT) dt

5

We then have

=M Dt de+ [ Ry, 0 Fi5 de (A.2)

'ﬂr| i

If By, t) £ 0, then we know from (A.2) that 8TP;/'fr; = 0. Therefore, for any
ziven 1, L P; 18 decreasing with t;. This zmplies that TPdei-1, g1, 20 = TPulai-1,

t;, 3 for any fixed 1. Coneequently, we obtain
TP 'I:D: {E'-}: {tﬂ} :E:III-1 TPLEEI 1-'*::-' SI] —ncf

=Ei, TPilsy ti5) —ner ==L, [ R(5,. 1) F(1) dt —nef(A.3)
=T J':' R{0.t) ft) dt — ncfisinceR, (¢, 0= 0)
£[* R(O,1) Filthdr — cf

Thiz completes the proof.
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EBE. Proof of Theorem 4.2
For amy given ei—1 and t, from (4.1}, we Eet

Fim= "L {p'(10 + [, + 8o () — el(ga1e™ 53 f i de

+H[1 L i) — elie) — gBE — £) 4 [BOED 4 - S5 —
Ok — B0t — - 1t dt
=[" Ryt nfmdt+ [ TR L) f dt withe2t, =5, (B.1) we then
have

Fiea=" IRty Fo des 0, B.2

And i, Fixl= 0. Taking the frst derivetrves of F (X)) with respect to x,

we ohtain
P (ZRL, =) f{xe 0 (B.3)

As 3 regult, we Enow that there exists a unique =>4 such that Fis) .
Thue, the sclution to (4. 1) uniquely exists. Smmilarly, from (4.2), we set

Gz [plai— odx) — celm — &) + 0B (2 —sif= D0 0— oo ) + o

+|= 4.t _I] ee-nl 1= mye, x) — Ris, s vwithx = 5 = ¢ (B4}

2]
We then hawve
G (s)=p (E—ods— R (T, ) — Ri=, eg— Hity 5) = 0, IB.3)

since Bt ©)= 0 and im0 (=) = —o< 0. By takinz the first derivatives
af GiE) with respect to X, we obtain

G =) =P, (B xi= L [B.0

o
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Cons=guently, there existe 8 umigue t,(>e) such that & (. )~0, which
impliss that sohation to (4.2} oniquely exists. Therefors, we completz the
proaf

C. Proof of Theorem 4.5

Taking the second derivetives with respect to . and &, on TPin, {&). &l we
hawe

A=

s = [PCED+ & — £, (508 (00 - [ey — B e(t) — 51805 — 1)

+ TH{pin) — eFIBI — 1) + BT — 20 — 6B — 177

HRr O+ o — o (80 — e (8] Be, — ) f(tyde

=T LHp ) 4 [Bel it — 2t — 8 (e, + 8 o () — et e i i dt

T = —PulSe_ 18 FU5 0= 0

.::J:: = Ry (T80 F5)= 0
",,-;P = [t 0+ e, — it ) — iy — 8B, — 50~ s Pt — 5]
[T, + B o f 118 % f 5 0.1

Let AE be the principal minor of order k, then under condidon (4.7 (£.3),
it 15 clear that

A=ETL Y= Byt £iE= O, (C-2)

Brf il S8

Which implizs that A.+{#TP8s, 8= 0

Ag= FTE ST ST '."'1'r“=.__ :‘-'Tr“:h N I:l':'q + 43T ]IJ' 0, I:GE}

o fef tr, 8¢ e de, ™ e ey e, it &,
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Which impliss that A+ (F2TF/Gt8s0A.> 0. For principal minar of hizher
arder, i 2, 5, . . ., it is not difficult to show that they eatefy the followine

Terursive ralstion:

-!l-h—lz% -z [.ﬂ__lp ] Az,

Ao T[] (C.4)

g, AT

TWith the initisl A, = 1. From (4.7} - (4.d) and the relaton between second-
arder partizl derivatives, we have

T nLLIY JMNP T L W

-3 - - T
= Lo Lo Ty

'l““=_.ﬂ‘ﬁ'="’ LI-TI |:":"e|-:+ _-'-rr '5-:-}

1, ik

Fori1=2Zm {C.3), we chtain

Il_.ll.l.l.PJ-E_ TP I:'—llll!'l' |11 IJ.|::|':|:|

-J- lr .'I'_. ||E| _'I' dr -

Ay 4 .1-1:-1‘ uJTT |:"..+ I:'*rlﬁ:l;_ 0. (6}

'—lr‘II

Thues,
e s 0 AT O e

Froceedme mmdoctvely, we have

Mgz + i = 0, da* e = 0, (C.8)
Therefore, Ay <0 and A= 0, for1=2, 5, . . . This completze the proof
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